

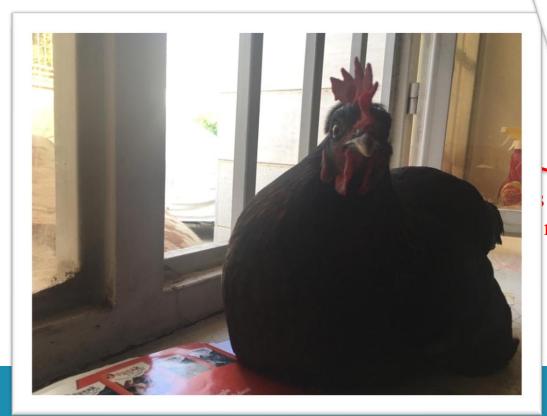
Let's Meet – Inside the Campus

26 September 2023

Presented by: Mohaddaseh Nikseresht

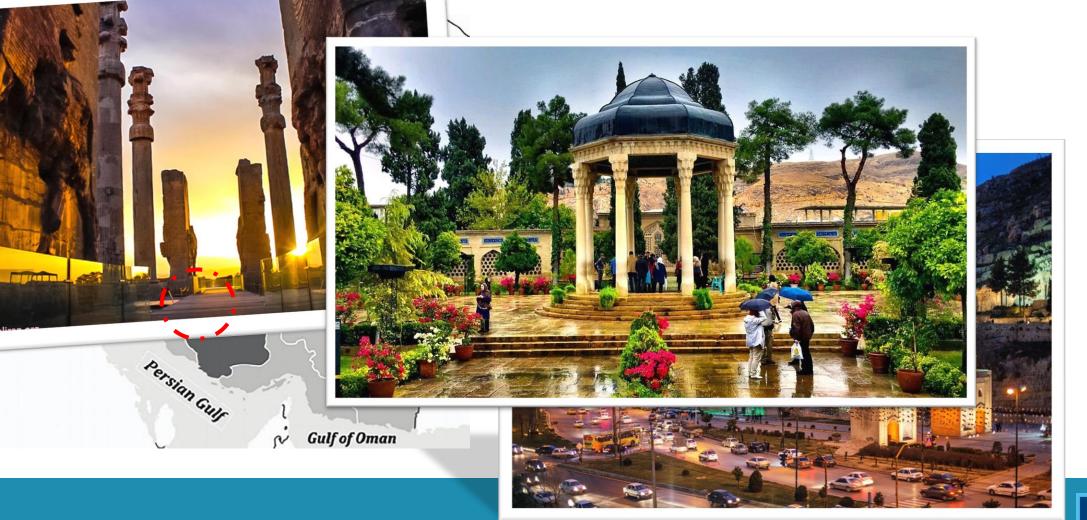
Outline

- Let's Explore who I am
- Introduction
- Bitflips
- Software Protection Techniques
- A look into my PhD
- Overview
- References



Basics

I love to play video games.


And I love chicken.

is my pet. name is "The Lady"

Hometown: Shiraz, Iran

Academic background

I studied **Computer Engineering** at **Shiraz university.** One of the **highest-ranked public** universities in Iran.

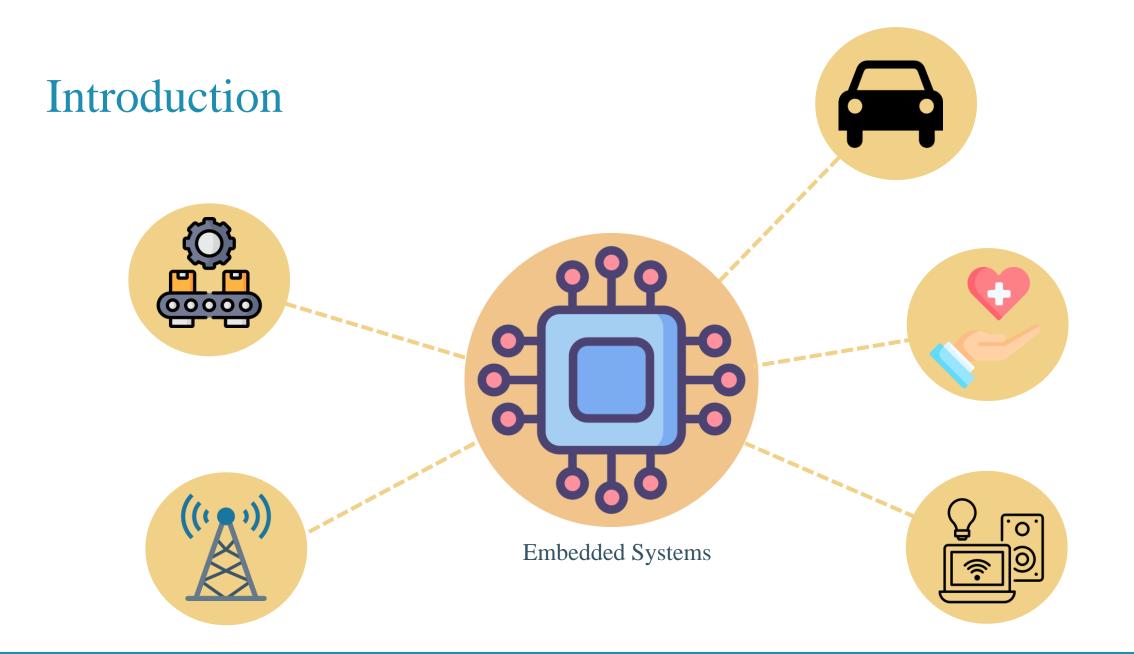
My interest in **embedded systems** began ...

In 2019, I have graduated as ranked one with several publications in well-known conferences and journals.

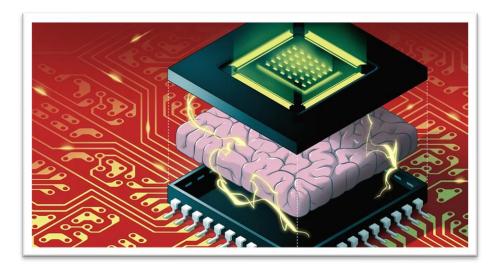
6

Academic background

In 2021, I have started to pursue my PhD at KU Leuven, under Supervision of **Prof. Jeroen Boydens**.


Almost three years into my PhD ...

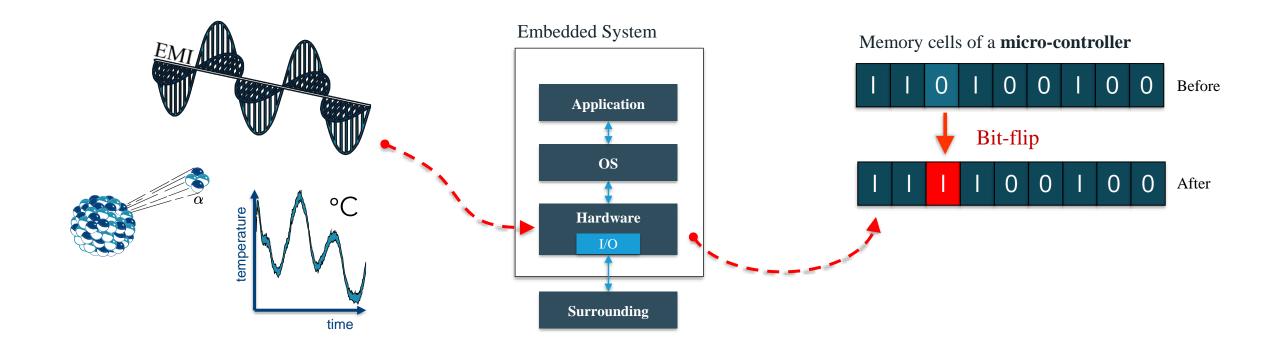
Introduction



Introduction

Advance in technology made it possible to build electronic components which are:

- Programable (+)
- efficient (+)
- cost-effective (+)



However, these changes lead to limit the processor systems' reliability byShrinking of transistor sizes (-)

Soft Errors (Bitflips)

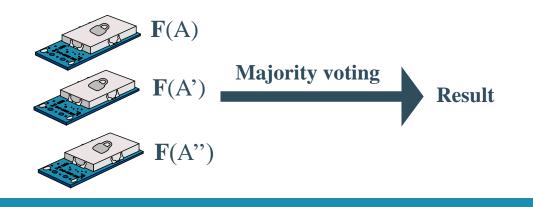
Increase registers vulnerability to radiation-induced Single Event Effects (SEE)

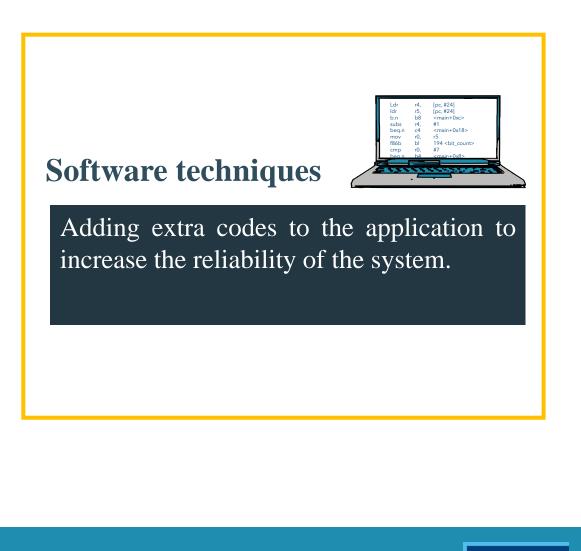
Different types of software errors: $0 \ 0 \ 1$ Original value											
Different types of software errors:							0	0 1	Original value		
							0	1 1	Modified value		
1d0:	MOV	r3,	rO		1d0:	MOV	r3,	rO	1d0:	MOV	r3, r0
1d2:	CBZ	r0,	1e2		1d2:	CBZ	r0,	1e2	1d2:	CBZ	r0, 1e2
1d4:	MOVS	rO,	#0		1d4:	MOVS	r0,	#0	1d4:	MOVS	r0, #0
1d6:	SUBS	r2,	r3,	#1	1d6:	SUBS	r2,	r3	1d6:	SUBS	r2, r3
1d8:	ADDS	r3,	r1		1d8:	ADDS	r3,	r1	1d8:	ADDS	r3, (r1)
1da:	ADD	r0,	r0,	#1	1da:	ADD	rO,	rO, # 1	1da:	ADD	rO, rO, #1
1de:	BNE	1d6			1de:	BNE	1d6	*	1de:	BNE	1d6
1e0:	ADD	r0,	#1		1e0:	ADD	r0,	#1	1e0:	ADD	rO, #1
1e2:	BX	lr			1e2:	BX	lr		1e2:	BX	lr

Original program

Control Flow Error (CFE)

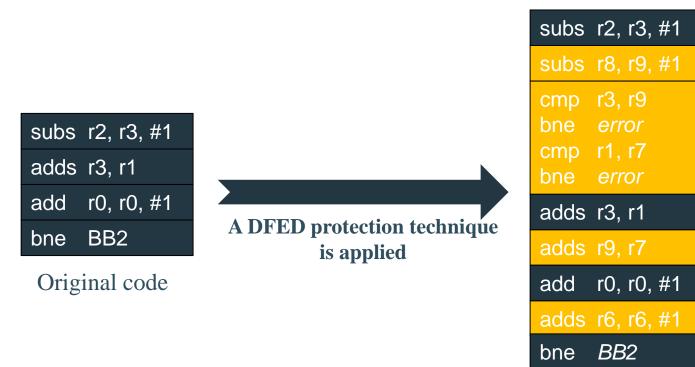
Data Flow Error (DFE)




Protecting embedded systems

Hardware techniques

Adding extra physical component to the system to increase the reliability of the system.



Software Protection Techniques

Software Protection Techniques

Protecting embedded systems

Protected code

Pros and Cons


- Flexible and can be automated (+)
- Suitable for COTS systems (+)
- Extra code size Overhead imposed on the system (-)
- Execution time of the application may be increased (-)

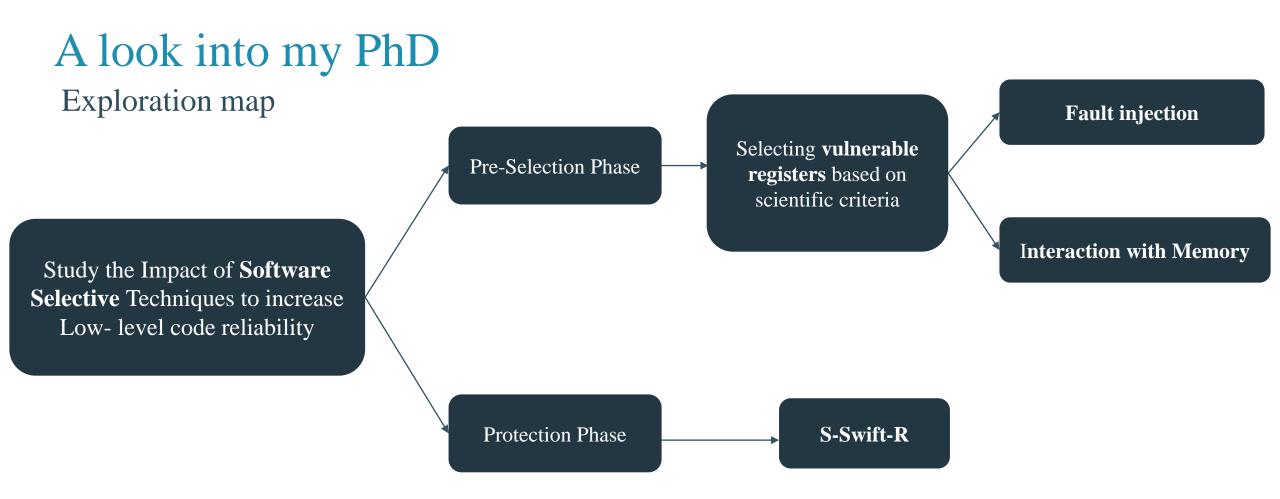
Software Protection Techniques

Required registers for DFED techniques

Several researches have been done...

A look into my PhD: Selective Implementation of Software Resilience Techniques to Increase Low-Level Code Reliability

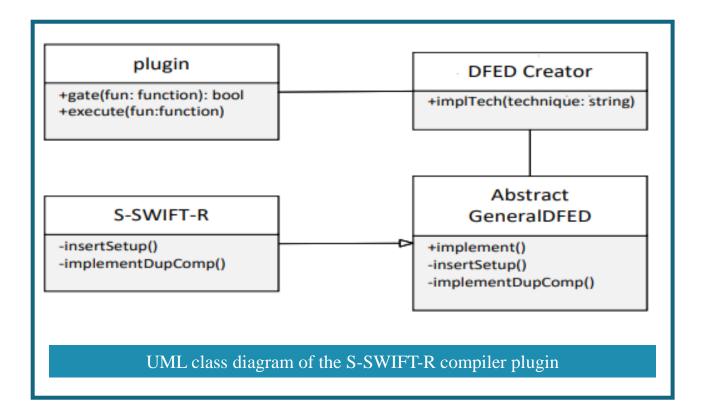
A look into my PhD


Selective Protection

Software Redundancy

Software Implemented Hardware Fault Tolerance (SIHFT)

- Give systems the ability to detect and correct faults (+)
- Memory usage (-)
- Storage usage (-)


SOLUTION: Partially protecting the registers

A look into my PhD

Protection phase - Automatic Implementation

A look into my PhD

Example

		Selective	SWIFT-R		
#	Non-Hardened	Protected register: s0	Protected register: s1	Protected registers: s0, s1	
1	LOAD s0, 00	LOAD s0, 00	LOAD s0, 00	LOAD s0, 00	
2		create s0 copies		create s0 copies	
3	LOAD s1, 2A	LOAD s1, 2A	LOAD s1, 2A	LOAD s1, 2A	
4			create s1 copies	create s1 copies	
5			majority voter for s1	majority voter for s1	
6	ADD s0, s1	ADD s0, s1	ADD s0, s1	ADD s0, s1	
7		ADD s0', s1		ADD s0', s1	
8		ADD s0", s1		ADD s0", s1	
9		majority voter for s0		majority voter for s0	
10			majority voter for s1	majority voter for s1	
11	STORE s0, (s1)	STORE s0, (s1)	STORE s0, (s1)	STORE s0, (s1)	

A look into my PhD Example

*code size and execution time overhead increase exponentially as we increase the number of registers to protect

Number of Register	SDC	NE	Number of Register	SDC	NE
1 Register			2 Registers		
S_SWIFT_R_F	Min: 14.5% <mark>Avg.: 16.3%</mark> Max: 36.2%	Min: 62.3% Avg.: 72.1% Max: 84.3%	S_SWIFT_R_F	Min: 10.2% <mark>Avg.: 12.3%</mark> Max: 21.7%	Min:69.4% Avg.: 80.1% Max: 88.9%
S_SWIFT_R_M	Min: 24.2% <mark>Avg.: 19.7%</mark> Max: 49.7%	Min:50.3% Avg.:66.5% Max:73.9%	S_SWIFT_R_M	Min: 12.1% <mark>Avg.: 14.9%</mark> Max: 20.5%	Min: 66.2% Avg.: 78.6% Max:79.2%
Unprotected (baseline)	Min: 29.1% Avg.: 47.8% Max: 59.34%	Min:29.1% Avg.: 41.8% Max: 59.34%	Unprotected (baseline)	Min:29.1% <mark>Avg.: 47.8%</mark> Max: 59.34%	Min: 29.1% Avg.: 47.8% Max: 59.34%
3 Registers			4 Registers		
S_SWIFT_R_F	Min: 14% <mark>Avg.: 9.7%</mark> Max: 18%	Min: 81.9% Avg.: 87.3% Max:89.1%	S_SWIFT_R_F	Min: 2.9% <mark>Avg: 3.1%</mark> Max: 4.2%	Min: 80% Avg.: 89.3% Max: 90.7%
S_SWIFT_R_M	Min: 9.3% <mark>Avg.: 10.1%</mark> Max: 12.13%	Min: 77.9% Avg.: 83.2% Max: 85.9%	S_SWIFT_R_M	Min: 5.3% <mark>Avg.:4.1%</mark> Max: 6.8%	Min: 79.3% Avg. :86.1% Max: 80.2%
Unprotected (baseline)	Min: 40.23% <mark>Avg.: 58.6%</mark> Max: 67.3%	Min: 29.8% Avg.: 39.2% Max: 60.9%	Unprotected (baseline)	Min: 40.23% <mark>Avg.: 58.6%</mark> Max: 67.3%	Min: 29.8% Avg.: 39.2% Max: 60.9%

A look into my PhD: Example

KU LEUVEN

Overview

Overview

- The role of Embedded systems and the impact of downscale technology on their reliability
- Bitflips:
 - Definition
 - Different type of Soft errors: DFE / CFE
 - Hardware/ Software techniques to protect against bitflips
- Software Protection Techniques
 - The Pros and Cons
 - The problem of full software protection techniques
- A look into my PhD: Selective protection
 - Exploration map
 - $_{\circ}$ An example

References

[1] Mohaddaseh Nikseresht, Jens Vankeirsbilck, Jeroen Boydens, A Study on Selective Implementation Approaches for Soft Error Detection Using S-SWIFT-R, Electronics, volume 11, issue 20, 21 pages, Multidisciplinary Digital Publishing Institute (MDPI), October 19, 2022

[2] Mohaddaseh Nikseresht, Jens Vankeirsbilck, Davy Pissoort, Jeroen Boydens, A Selective Soft Error
 Protection Method for COTS Processor-based Systems, XXX International Scientific Conference Electronics
 (ET), 2021 XXX International Scientific Conference Electronics (ET), pages 1-5, Sozopol, Bulgaria,
 September 15-17, 2021

[3] Mohaddaseh Nikseresht, Brent De Blaere, Jens Vankeirsbilck, Davy Pissoort, Jeroen Boydens, Impact of Selective Implementation on Soft Error Detection Through Low-level Re-execution, DASC (Workshop),
2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 6 pages, AB, Canada, October 25-28, 2021

Questions?

