





# A Tutorial on Epistemic Uncertainty and its Application

### Dr Keivan (K1) Shariatmadar, PhD, MSc, BSc

Uncertainty in AI - Optimisation - Decision Mecha(tro)nic System Dynamics (LMSD), Bruges Campus, KU Leuven

17<sup>th</sup> Oct. 2024 – Let's Meet Event - IEEE Student Branch KU

| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
|                |                             |                         |               |                   |                       |

#### OVERVIEW

#### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

S REAL-WORLD APPLICATIONS From Epistemic to Decisions

**4** SUMMARY

**G** CONCLUSION

**6** Q&A





| OVERVIEW INTI | RODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | Q&A |
|---------------|--------------------------|-------------------------|---------|------------|-----|
| 00 000        |                          |                         |         |            |     |

### **O**VERVIEW

INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

 REAL-WORLD APPLICATIONS From Epistemic to Decisions

**4** SUMMARY

**6** CONCLUSION

6 Q&A



| Ovei<br>○● | RVIEW   | INTRODUCTION TO UNCERTAINTY          | REAL-WORLD APPLICATIONS            | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;</b><br>000 |
|------------|---------|--------------------------------------|------------------------------------|---------------|-------------------|----------------------|
| B10        | & Intro |                                      |                                    |               |                   |                      |
|            |         |                                      |                                    |               |                   |                      |
|            | STILI   | L MATHEMATICIAN                      |                                    |               |                   |                      |
|            | [1995   | 5-1999] BSc Applied Mathematics - C  | omputer Simulation [Sharif Univers | ity]          |                   |                      |
|            | [1999   | 9-2001] MSc Applied Mathematics - C  | control Theory [Sharif University] |               |                   |                      |
|            | [200]   | 1-2007] Lecturer & member of faculty | of Mathematics [Qazvin University] |               |                   | - 1                  |
|            |         |                                      |                                    |               |                   | - 1                  |

[2001-2005] PhD Pure Mathematics - Control Theory, Stability [Sharif University]

[2007-2012] Research Assistant Fuzzy Finite Element [Ghent University]

[2012-2017] Research Engineer, R&D Project Manager, Automotive [Dana Belgium]

[2017-2021] PhD Mathematical Engineering, Optimisation under Uncertainty [KU Leuven]

[2021 - Now] Senior Research Fellow, Epistemic AI, FET-Open Project [KU Leuven]

**KU LEUVEN** 



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | Q |
|----------|-----------------------------|-------------------------|---------|------------|---|
|          | •••••••                     |                         |         |            |   |

#### **OVERVIEW**

#### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

 REAL-WORLD APPLICATIONS From Epistemic to Decisions

**4** SUMMARY

**6** CONCLUSION

6 Q&A



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
|                |                             |                         |               |                   |            |

Uncertainty affects **daily decisions** (e.g., weather forecasts, predictions).





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY<br>○●○○○○○○○ | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION 000 | Q&A<br>000 |
|----------------|------------------------------------------|-------------------------|---------------|----------------|------------|
|                |                                          |                         |               |                |            |

Uncertainty affects **daily decisions** (e.g., weather forecasts, predictions).

Distinguishing between different types of uncertainty:



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | Summary<br>00 | CONCLUSION 000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|----------------|-----------------------|
|                |                             |                         |               |                |                       |

Uncertainty affects **daily decisions** (e.g., weather forecasts, predictions).

Distinguishing between different types of uncertainty: Aleatory (Randomness/Variability)



| OVERVIEW<br>00 | <b>INTRODUCTION TO UNCERTAINTY</b><br>O●○○○○○○○ | REAL-WORLD APPLICATIONS | Summary<br>00 | CONCLUSION 000 | Q&A<br>000 |
|----------------|-------------------------------------------------|-------------------------|---------------|----------------|------------|
|                |                                                 |                         |               |                |            |

Uncertainty affects **daily decisions** (e.g., weather forecasts, predictions).

Distinguishing between different types of uncertainty: Aleatory (Randomness/Variability) Epistemic (Lack of knowledge)



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | Q&A |
|----------|-----------------------------|-------------------------|---------|------------|-----|
|          | 00000000                    |                         |         |            |     |
|          |                             |                         |         |            |     |

Uncertainty affects **daily decisions** (e.g., weather forecasts, predictions).

Distinguishing between different types of uncertainty: Aleatory (Randomness/Variability) Epistemic (Lack of knowledge)

Motivation: Importance of handling uncertainty in scientific modeling and decision-making.



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| TYPES OF UN    | CEDTAINTV                   |                         |               |                   |            |

#### ALEATORY VS. EPISTEMIC UNCERTAINTY

Aleatory: Natural variability (randomness).





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| There are the  |                             |                         |               |                   |            |

#### ALEATORY VS. EPISTEMIC UNCERTAINTY

Aleatory: Natural variability (randomness).

Epistemic: Uncertainty due to incomplete knowledge or data.





| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS |
|----------|-----------------------------|-------------------------|
|          | 00000000                    | 000000                  |

TYPES OF UNCERTAINTY

#### ALEATORY VS. EPISTEMIC UNCERTAINTY

Aleatory: Natural variability (randomness).

Epistemic: Uncertainty due to incomplete knowledge or data.

These uncertainties are handled differently in models (e.g., deterministic vs. non-deterministic approaches).



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>00 | CONCLUSION | <b>Q&amp;A</b><br>000 |  |  |
|----------------|-----------------------------|--------------------------------|---------------|------------|-----------------------|--|--|
| TYPES OF UNG   | Types of Uncertainty        |                                |               |            |                       |  |  |

# **Epistemic uncertainty** refers to uncertainty arising from lack of knowledge or limited data.





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| TYPES OF UNC   | CERTAINTY                   |                         |               |                   |            |

**Epistemic uncertainty** refers to uncertainty arising from lack of knowledge or limited data.

**Bayesian** uncertainty is often used but struggles with very sparse data sets.

Examples of epistemic uncertainty:





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| TYPES OF UNC   | CERTAINTY                   |                         |               |                   |            |

**Epistemic uncertainty** refers to uncertainty arising from lack of knowledge or limited data.

**Bayesian** uncertainty is often used but struggles with very sparse data sets.

Examples of epistemic uncertainty: Engineering predictions





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| TYPES OF UNC   | CERTAINTY                   |                         |               |                   |            |

**Epistemic uncertainty** refers to uncertainty arising from lack of knowledge or limited data.

**Bayesian** uncertainty is often used but struggles with very sparse data sets.

Examples of epistemic uncertainty: Engineering predictions Forecasting in uncertain environments





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION 000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|----------------|-----------------------|
| TYPE OF UN     |                             |                         |               |                |                       |

#### IMPORTANCE OF EPISTEMIC UNCERTAINTY

#### Misjudging uncertainty can lead to flawed decisions.





| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICA |
|----------|-----------------------------|--------------------|
|          | 00000000                    |                    |

**TYPES OF UNCERTAINTY** 

#### IMPORTANCE OF EPISTEMIC UNCERTAINTY

Misjudging uncertainty can lead to flawed decisions.

**Epistemic** uncertainty can affect fields such as: Engineering and predictive maintenance



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL- |
|----------|-----------------------------|-------|
|          | 000000000                   | 00000 |

CONCLUSION

TYPES OF UNCERTAINTY

#### IMPORTANCE OF EPISTEMIC UNCERTAINTY

Misjudging uncertainty can lead to flawed decisions.

**Epistemic** uncertainty can affect fields such as: Engineering and predictive maintenance Healthcare diagnosis



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | - R1 |
|----------|-----------------------------|------|
|          | 00000000                    |      |

TYPES OF UNCERTAINTY

#### IMPORTANCE OF EPISTEMIC UNCERTAINTY

Misjudging uncertainty can lead to flawed decisions.

**Epistemic** uncertainty can affect fields such as: Engineering and predictive maintenance Healthcare diagnosis Artificial intelligence systems



Q&A 000

SIMPLE EXAMPLE OF EPI UNCERTAINTY

#### EXAMPLE: PREDICTING EVENTS WITH LIMITED DATA

Scenario: Predicting rainfall with limited data.



0&A

SIMPLE EXAMPLE OF EPI UNCERTAINTY

#### EXAMPLE: PREDICTING EVENTS WITH LIMITED DATA

Scenario: Predicting rainfall with limited data.

How adding data reduces epistemic uncertainty but leaves aleatory uncertainty intact.



#### SIMPLE EXAMPLE OF EPI UNCERTAINTY

#### EXAMPLE: PREDICTING EVENTS WITH LIMITED DATA

Scenario: Predicting rainfall with limited data.

How adding data reduces epistemic uncertainty but leaves aleatory uncertainty intact.

Visual example showing confidence intervals shrinking with more data.





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| DEALING WIT    | H EPISTEMIC UNCERTAINTY     |                         |               |                   |            |

#### APPROACHES TO HANDLE EPISTEMIC UNCERTAINTY

Collecting more data to reduce uncertainty.





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| DELLING MUT    | II EDICTENIC UNCEDEN INTEN  |                         |               |                   |            |

#### APPROACHES TO HANDLE EPISTEMIC UNCERTAINTY

Collecting more data to reduce uncertainty.

**Using prior knowledge** (Bayesian models) in the absence of sufficient data.





| OVERVIEW | INTRODUCTION TO | UNCERTAINTY |
|----------|-----------------|-------------|
|          | 00000000000     |             |

#### APPROACHES TO HANDLE EPISTEMIC UNCERTAINTY

Collecting more data to reduce uncertainty.

**Using prior knowledge** (Bayesian models) in the absence of sufficient data.

Alternative methods: Ensemble modelling, expert judgment, and non-Bayesian models e.g., Evidence Theory.



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| DEALING WITH   | H EPISTEMIC UNCERTAINTY     |                         |               |                   |            |

## Let's collect some data!





| OVERVIEW<br>00                     | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |  |
|------------------------------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|--|
| DEALING WITH EPISTEMIC UNCERTAINTY |                             |                         |               |                   |                       |  |







| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
| DEALING WIT    | H EPISTEMIC UNCERTAINTY     |                         |               |                   |                       |









| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY<br>○○○○○○○●○○ | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION | <b>Q&amp;A</b><br>000 |
|----------------|-------------------------------------------|-------------------------|---------------|------------|-----------------------|
| DEALING WIT    | H EPISTEMIC UNCERTAINTY                   |                         |               |            |                       |







| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
| DEALING WITH   | H EPISTEMIC UNCERTAINTY     |                         |               |                   |                       |







| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|-----------------------|
| -              |                             |                                |               |                   |                       |







| OVERVIEW    | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | Q&A |
|-------------|-----------------------------|-------------------------|---------|------------|-----|
| 00          | 0000000000                  | 000000                  | 00      | 000        | 000 |
| DEALING WIT | PH EPISTEMIC UNCERTAINTY    |                         |         |            |     |

#### **Clutch control design**





| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCL |
|----------|-----------------------------|-------------------------|---------|-------|
|          | 0000000000                  |                         |         |       |
|          |                             |                         |         |       |

#### **Clutch control design**





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| Designed       | - F                         |                         |               |                   |            |

#### **Clutch control design**

| Wet-Plate Clutch                                                     | Aim                                                                                   |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Piston<br>Chamber<br>Drum<br>To valve<br>Input shaft<br>Output shaft | Maximum output torque?<br>such that<br>the clutch is closing<br>the clutch is opening |  |


| OVERVIEW | INTRODUCTION TO UNCERTAINTY | ŀ |
|----------|-----------------------------|---|
|          | 0000000000                  |   |

DEALING WITH EPISTEMIC UNCERTAINTY

### **Clutch control design**

| Wet-Plate Clutch                                                     | Aim                                                                                              | Model                                                                                                                                                                                             |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Piston<br>Chamber<br>Drum<br>To valve<br>Input shaft<br>Output shaft | Maximum output torque?<br><sup>such that</sup><br>the clutch is closing<br>the clutch is opening | $\begin{aligned} \max_{\mu} \tau_{\mathbf{f}} \\ \text{st. } \tau_{f} &= \mu.RNA.p_{k}.\Delta\omega \\ f_{spring} &> p_{k}.A : \text{open} \\ f_{spring} &< p_{k}.A : \text{close} \end{aligned}$ |

 $\underline{\text{Estimate}}:\quad \tilde{\mu}\approx 0.11 \,\, \text{or} \,\, 0.14 \quad \text{(via a Lookup Table with manual calibrations)}$ 



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | R |
|----------|-----------------------------|---|
|          | 0000000000                  |   |

**KU LEUVEN** 

DEALING WITH EPISTEMIC UNCERTAINTY

### **Clutch control design**

| Wet-Plate Clutch                                                     | Aim                                                                                   | Model                                                                                                                                                                                             |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Piston<br>Chamber<br>Drum<br>To valve<br>Input shaft<br>Output shaft | Maximum output torque?<br>such that<br>the clutch is closing<br>the clutch is opening | $\begin{aligned} \max_{\mu} \tau_{\mathbf{f}} \\ \text{st. } \tau_{f} &= \mu.RNA.p_{k}.\Delta\omega \\ f_{spring} &> p_{k}.A : \text{open} \\ f_{spring} &< p_{k}.A : \text{close} \end{aligned}$ |

11



| OVERVIEW | INTRODUCTION TO UNCERTAINTY |
|----------|-----------------------------|
|          | 0000000000                  |

DEALING WITH EPISTEMIC UNCERTAINTY

### **Clutch control design**

| Wet-Plate Clutch                                                     | Aim                                                                                   | Model                                                                                                                                            |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Piston<br>Chamber<br>Drum<br>To valve<br>Input shaft<br>Output shaft | Maximum output torque?<br>such that<br>the clutch is closing<br>the clutch is opening | $\max_{\mu} \tau_{\mathbf{f}}$<br>st. $\tau_{f} = \mu.RNA.p_{k}.\Delta\omega$<br>$f_{spring} > p_{k}.A$ : open<br>$f_{spring} < p_{k}.A$ : close |

# COF is varying i.e., $\mu \in [\underline{\mu}, \overline{\mu}]$ How to efficiently control the torque under fixed uncertain $\mu$ ?



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
| DEALING WIT    | H EPISTEMIC UNCERTAINTY     |                         |               |                   |            |

# MEASURING EPISTEMIC UNCERTAINTY

### Techniques to measure epistemic uncertainty:





| OVERVIEW     | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | <b>Q&amp;A</b> |
|--------------|-----------------------------|-------------------------|---------|------------|----------------|
| 00           | ○○○○○○○○●                   |                         | 00      | 000        | 000            |
| DEALING WITH | H EPISTEMIC UNCERTAINTY     |                         |         |            |                |

### MEASURING EPISTEMIC UNCERTAINTY

Techniques to measure epistemic uncertainty: (Probability) Intervals





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY        | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION 000 | <b>Q&amp;A</b><br>000 |
|----------------|------------------------------------|-------------------------|---------------|----------------|-----------------------|
| DELLING WIT    | The Presence I Alexandre Alexandre |                         |               |                |                       |

# MEASURING EPISTEMIC UNCERTAINTY

Techniques to measure epistemic uncertainty: (Probability) Intervals Bounds and Fuzzy Sets



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLU |
|----------|-----------------------------|-------------------------|---------|--------|
|          | 000000000                   |                         |         |        |
|          |                             |                         |         |        |

DEALING WITH EPISTEMIC UNCERTAINTY

### MEASURING EPISTEMIC UNCERTAINTY

Techniques to measure epistemic uncertainty:

(Probability) Intervals

Bounds and Fuzzy Sets

Example of modelling uncertainty with limited data points.



# OVERVIEW

### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

## REAL-WORLD APPLICATIONS From Epistemic to Decisions

- **4** SUMMARY
- **6** CONCLUSION

# **6** Q&A



### EXAMPLE: PREDICTIVE MAINTENANCE

**Predictive maintenance** involves anticipating equipment failure based on sparse data.



Q&A 000

### EXAMPLE: PREDICTIVE MAINTENANCE

**Predictive maintenance** involves anticipating equipment failure based on sparse data.

**Epistemic** uncertainty affects decision-making when data is insufficient to predict failures accurately.



### EXAMPLE: PREDICTIVE MAINTENANCE

**Predictive maintenance** involves anticipating equipment failure based on sparse data.

**Epistemic** uncertainty affects decision-making when data is insufficient to predict failures accurately.

**Reducing** epistemic uncertainty allows industries to better understand the behaviour of their processes, leading to improved predictions (<u>cost</u>), optimised decision-making (<u>best</u>), increased safety (<u>EMC</u>), and enhanced reliability (design).



### EXAMPLE: PREDICTIVE MAINTENANCE

**Predictive maintenance** involves anticipating equipment failure based on sparse data.

**Epistemic** uncertainty affects decision-making when data is insufficient to predict failures accurately.

**Reducing** epistemic uncertainty allows industries to better understand the behaviour of their processes, leading to improved predictions (<u>cost</u>), optimised decision-making (<u>best</u>), increased safety (<u>EMC</u>), and enhanced reliability (design).

**Leads** to better performance, lower costs, competitive advantage in complex industrial environments (Smart Factory).



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>00 | Conclusion<br>000 | Q&A<br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|------------|
|                |                             |                                |               |                   |            |

### **EXAMPLE: EPISTEMIC AI**

**Epistemic (Un)Supervise Learning** involves anticipating Epistemic Uncertainty using Interval NN.





| OVERVIEW | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY | CONCLUSION | <b>Q&amp;A</b> |
|----------|-----------------------------|--------------------------------|---------|------------|----------------|
| 00       |                             | ○○●○○○                         | 00      | 000        | 000            |
|          |                             |                                |         |            |                |

### EXAMPLE: EPISTEMIC AI

**Epistemic (Un)Supervise Learning** involves anticipating Epistemic Uncertainty using Interval NN.

**Epistemic Reinforcement Learning** deals with e.g., Epistemic Reward Function. Bellman Equation:

$$V_{\pi}(S_t) := \max_{\pi} [R_{t+1} + \gamma V_{\pi}(S_{t+1})]$$



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|-----------------------|
|                |                             |                                |               |                   |                       |

### EXAMPLE: EPISTEMIC AI

**Epistemic (Un)Supervise Learning** involves anticipating Epistemic Uncertainty using Interval NN.

**Epistemic Reinforcement Learning** deals with e.g., Epistemic Reward Function. Bellman Equation:

$$V_{\pi}(S_t) := \max_{\pi} [R_{t+1} + \gamma . V_{\pi}(S_{t+1})]$$

where the total return at time t:  $R_t := r_{t+1} + \gamma R_{t+1}$ e.g., local reward at t:  $r_t$  is unknown:  $r_t \in [a,b]!$ 



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|-----------------------|
| FROM EPISTE    | MIC TO DECISIONS            |                                |               |                   |                       |

### DECISION-MAKING UNDER EPISTEMIC UNCERTAINTY

### Strategies for decision-making when model uncertainty is high:





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|-----------------------|
| FROM EPISTER   | MIC TO DECISIONS            |                                |               |                   |                       |

# Decision-Making Under Epistemic Uncertainty

Strategies for decision-making when model uncertainty is high: Conservative decisions based on worst-case scenarios.





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>00 | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|-----------------------|
| Enour Enrome   | tra ma Dinatatawa           |                                |               |                   |                       |

### FROM EPISTEMIC TO DECISIONS

### DECISION-MAKING UNDER EPISTEMIC UNCERTAINTY

Strategies for decision-making when model uncertainty is high: Conservative decisions based on worst-case scenarios. Optimistic decision-making with risk assessments (less conservative scenario).





| OVERVIEW     | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY | CONCLUSION | <b>Q&amp;A</b> |
|--------------|-----------------------------|--------------------------------|---------|------------|----------------|
| 00           |                             | ○○○○●○                         | 00      | 000        | 000            |
| FROM EPISTER | MIC TO DECISIONS            |                                |         |            |                |

### Step-by-step problem-solving framework under uncertainty:





| OVERVIEW    | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY | CONCLUSION | Q&A |
|-------------|-----------------------------|--------------------------------|---------|------------|-----|
| 00          |                             | ○○○○●○                         | 00      | 000        | 000 |
| FROM FRIETE | MIC TO DECISIONS            |                                |         |            |     |

Step-by-step problem-solving framework under uncertainty: Define the problem and uncertainty (convert to a decision problem).





| OVERVIEW     | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY | CONCLUSION | <b>Q&amp;A</b> |
|--------------|-----------------------------|--------------------------------|---------|------------|----------------|
| 00           |                             | ○○○○●○                         | 00      | 000        | 000            |
| Enour Enrome | na na Dratatova             |                                |         |            |                |

Step-by-step problem-solving framework under uncertainty: Define the problem and uncertainty (convert to a decision problem).

Use epistemic uncertainty quantification to model.



| OVERVIEW        | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY | Conclusion | <b>Q&amp;A</b> |
|-----------------|-----------------------------|--------------------------------|---------|------------|----------------|
| 00              |                             | ○○○○●○                         | 00      | 000        | 000            |
| De ses Deserves |                             |                                |         |            |                |

Step-by-step problem-solving framework under uncertainty:Define the problem and uncertainty (convert to a decision problem).Use epistemic uncertainty quantification to model.Generate solutions (worst-case vs. optimality).



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | <b>Real-World Applications</b> | SUMMARY | CONCLUSION | Q&A |
|----------|-----------------------------|--------------------------------|---------|------------|-----|
| 00       |                             | ○○○○●○                         | 00      | 000        | 000 |
| E        | Deserve Deserves            |                                |         |            |     |

Step-by-step problem-solving framework under uncertainty: Define the problem and uncertainty (convert to a decision problem).

Use epistemic uncertainty quantification to model.

Generate solutions (worst-case vs. optimality).

Provide two hypothetical solution sets to reason.



| OVERVIEW | INTRODUCTION TO | UNCERTAINTY |
|----------|-----------------|-------------|
|          | 0000000000      |             |

**REAL-WORLD APPLICATIONS** 

SUMMARY 00

IARY CON

Q&A 000

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### APPLICATIONS IN AI AND ENGINEERING

Epistemic uncertainty plays a role in:



0&A

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### APPLICATIONS IN AI AND ENGINEERING

Epistemic uncertainty plays a role in:

AI (e.g., Epistemic AI).

Machine learning (e.g., uncertainty in model predictions).



APPLICATIONS OF EPISTEMIC UNCERTAINTY

### APPLICATIONS IN AI AND ENGINEERING

Epistemic uncertainty plays a role in:

Al (e.g., Epistemic Al). Machine learning (e.g., uncertainty in model predictions).

Autonomous systems (e.g., self-driving cars operating under uncertainty).

K. Wang, F. Cozzulin, K. Shariatmadar, D. Moens, H. Hallez, Credal Deep Ensembles for Uncertainty

Quantification, The Thirty-eighth Annual Conference on Neural Information Processing Systems NeurIPS 2024.





**Q&A** 000

### APPLICATIONS OF EPISTEMIC UNCERTAINTY

### Epistemic AI—Paradigm Shift in AI:

**Aim** is to create a new paradigm for a **next-generation Al** providing worst-case guarantees on its predictions thanks to proper modelling of real-world uncertainties.

5-year EU EIC FET-Open/Pathfinder-Open project, started on 1 March 2021, with a budget of **3.2 M€** with Oxford Brookes University, KU Leuven and TU Delft. **3-6 % success rate**.



| OVERVIEW | INTRODUCTION TO | UNCERTAINTY |
|----------|-----------------|-------------|
|          | 0000000000      |             |

REAL-WORLD APPLICATIONS

SUMMARY 00

MARY CO

Q&A 000

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### APPLICATIONS IN AI AND ENGINEERING

Engineering designs (e.g., construction/optimisation with incomplete information).



| OVERVIEW | INTRODUCTION TO | UNCERTAINTY |
|----------|-----------------|-------------|
|          | 0000000000      |             |

SUMMARY 00

CONCLUX

Q&A 000

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### LINEAR PROGRAMMING UNDER UNCERTAINTY (LPUU)

maximise decisions such that Conditions

### Optimal decision which is satisfying in the constraints?





| OVERVIEW | INTRODUCTION TO | UNCERTAINTY |
|----------|-----------------|-------------|
|          | 000000000       |             |

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### LINEAR PROGRAMMING UNDER UNCERTAINTY (LPUU)

| maximise<br>decisions | Goal       |               | maximise<br>decisions | Uncertain goal              |
|-----------------------|------------|---------------|-----------------------|-----------------------------|
| such that             | Conditions | $\rightarrow$ | such that             | <b>Uncertain conditions</b> |

# Optimal **decision** which is satisfying in the constraints under **uncertainty**?





| OVERVIEW | INTRODUCTION TO | O UNCERTAINTY |
|----------|-----------------|---------------|
|          | 0000000000      |               |

**REAL-WORLD APPLICATIONS** 

SUMMARY 00 CONCLUSIO 000 Q&A 000

APPLICATIONS OF EPISTEMIC UNCERTAINTY



| maximise<br>decisions | Goal       |               | maximise<br>decisions | Uncertain goal       |
|-----------------------|------------|---------------|-----------------------|----------------------|
| such that             | Conditions | $\rightarrow$ | such that             | Uncertain conditions |

maximise  $U^T x$ such that  $Yx \leq Z$ 

 $\mathcal{X}$  is the optimisation variable taking values in a bounded set  $M \subseteq \mathbb{R}^n_{\geq 0}$ , Y, Z, U are random variables taking values y, z, u in  $\mathbb{R}^{m \times n}, \mathbb{R}^n$ . The elements of Y, Zand U are *independent* and modelled as *imprecise uncertainty*.

| OVERVIEW | INTRODUCTION TO | O UNCERTAINTY |
|----------|-----------------|---------------|
|          | 0000000000      |               |

APPLICATIONS OF EPISTEMIC UNCERTAINTY

### LINEAR PROGRAMMING UNDER UNCERTAINTY (LPUU)

| maximise<br>decisions | Goal       |               | maximise<br>decisions | Uncertain goal              |
|-----------------------|------------|---------------|-----------------------|-----------------------------|
| such that             | Conditions | $\rightarrow$ | such that             | <b>Uncertain conditions</b> |

### Simplest case

What is the **largest** value x which is (strictly) smaller than  $y \in \mathbb{R}$  and we don't know y ?



| OVERVIEW | INTRODUCTION TO | O UNCERTAINTY |
|----------|-----------------|---------------|
|          | 0000000000      |               |

**REAL-WORLD APPLICATIONS** ○○○○○●

SUMMARY 00

RY CONCI 000 Q&A 000

APPLICATIONS OF EPISTEMIC UNCERTAINTY



| maximise<br>decisions | Goal       |               | maximise<br>decisions | Uncertain goal              |
|-----------------------|------------|---------------|-----------------------|-----------------------------|
| such that             | Conditions | $\rightarrow$ | such that             | <b>Uncertain conditions</b> |

### Simplest case

What is the **largest** value x which is (strictly) smaller than  $y \in \mathbb{R}$  and we don't know y ?

 $\begin{array}{ll} \text{maximise} & x \\ \text{such that} & x < \mathbf{Y} \end{array}$ 

**Y** is a random variable taking values y in  $\mathbb{R}$ . x is in a bounded subset in  $\mathbb{R}_{\geq 0}$ .



| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION | Q&A |
|----------|-----------------------------|-------------------------|---------|------------|-----|
|          |                             |                         | •0      |            |     |
|          |                             |                         |         |            |     |

## OVERVIEW

### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

8 REAL-WORLD APPLICATIONS From Epistemic to Decisions

# **4** SUMMARY

**6** CONCLUSION

# **6** Q&A



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | Summary<br>○● | CONCLUSION<br>000 | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
|                |                             |                         |               |                   |                       |

### KEY TAKEAWAYS

# Uncertainty is unavoidable, but it can be quantified and managed.





| <b>Q&amp;A</b><br>000 |
|-----------------------|
| Q<br>o                |

### Key Takeaways

Uncertainty is **unavoidable**, but it can be quantified and managed.

Epistemic uncertainty arises due to a lack of knowledge or data/second-level uncertainty.




| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | <b>REAL-WORLD APPLICATIONS</b> | SUMMARY<br>○● | CONCLUSION<br>000 | Q&A<br>000 |
|----------------|-----------------------------|--------------------------------|---------------|-------------------|------------|
|                |                             |                                |               |                   |            |

#### KEY TAKEAWAYS

Uncertainty is **unavoidable**, but it can be quantified and managed.

Epistemic uncertainty arises due to a lack of knowledge or data/second-level uncertainty.

Proper handling of epistemic uncertainty leads to more robust models and decisions.



|  |              | ~ |
|--|--------------|---|
|  | • <b>0</b> 0 |   |

### OVERVIEW

### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

- REAL-WORLD APPLICATIONS From Epistemic to Decisions
- **4** SUMMARY
- **G** CONCLUSION
- **6** Q&A



| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | Conclusion<br>○●○ | Q&A<br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|------------|
|                |                             |                         |               |                   |            |

#### FINAL REMARKS AND CONCLUSION

Practical relevance of epistemic uncertainty in real-world applications: Human – Weather – Ttraffic – **Unknown unknowns** 





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>○●○ | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
|                |                             |                         |               |                   |                       |

#### FINAL REMARKS AND CONCLUSION

Practical relevance of epistemic uncertainty in real-world applications: Human – Weather – Ttraffic – **Unknown unknowns** 

Why we first start with Probabilities!?





| OVERVIEW INTRODUCTION TO UNCERTAINTY REAL-WORLD APPLICATIONS SUMMARY CONCLUSION Q& | W INTRODUCTIO | INTRODUCTION TO UN | TAINTY REAL-WO | ORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>○●○ | <b>Q</b> &<br>00 |
|------------------------------------------------------------------------------------|---------------|--------------------|----------------|-------------------|---------------|-------------------|------------------|
|------------------------------------------------------------------------------------|---------------|--------------------|----------------|-------------------|---------------|-------------------|------------------|

### Be Uncertain about the Uncertainty...





| OVERVIEW<br>00 | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY<br>00 | CONCLUSION<br>○●○ | <b>Q&amp;A</b><br>000 |
|----------------|-----------------------------|-------------------------|---------------|-------------------|-----------------------|
|                |                             |                         |               |                   |                       |

## Be Uncertain about the Uncertainty...

# Further reading and exploration of advanced methods to handle uncertainty:





REAL-WORLD APPLICATIONS

5 SUMMARY 00

Conclusion ○○●

ADVANCED UNCERTAINTY - OPEN PROBLEMS

## Focus: Advanced Uncertainty



000

CONCLUSION Q&A

ADVANCED UNCERTAINTY - OPEN PROBLEMS

## **Focus:** Advanced Uncertainty

What are the problems?



0&A

ADVANCED UNCERTAINTY - OPEN PROBLEMS

## What are the problems?

#### Identification: How to know there is advanced uncertainty?



# Identification of Imprecision in Data Using $\epsilon$ -Contamination Advanced Uncertainty Model

Authors

Authors and affiliations

Keivan Shariatmadar , Hans Hallez, David Moens https://doi.org/10.1007/978-3-030-77256-7\_14





**KU LEUVEN** 

ADVANCED UNCERTAINTY - OPEN PROBLEMS

## What are the problems?

# **Classification:** How to choose the best model to quantify the advanced uncertainty?



RESEARCH ARTICLE

WILEY

CMMSE: Linear programming under *e*-contamination uncertainty

Keivan Shariatmadar<sup>©</sup> | Matthias De Ryck | Kristof Driesen | Frederik Debrouwere | Mark Versteyhe

https://doi.org/10.1002/cmm4.1077



Keivan Shariatmadar ; Mark Versteyhe

https://doi.org/10.1109/ICCMA46720.2019.8988632



0&A

<u>Advanced U</u>ncertainty – Open problems

### What are the problems?

**Reasoning:** How to reason? An approach to solve the problems dealing with advanced uncertainty.





0&A

Advanced Uncertainty – Open problems

## What are the problems?

**Complexity:** How to deal with the complexity in the proposed approach (*advanced decision theory*)?



MDPI

Article

# Day-Ahead Energy and Reserve Dispatch Problem under Non-Probabilistic Uncertainty

Keivan Shariatmadar <sup>1,+</sup><sup>0</sup>, Adriano Arrigo <sup>2</sup><sup>0</sup>, François Vallée <sup>2</sup><sup>0</sup>, Hans Hallez <sup>3</sup><sup>0</sup>, Lieven Vandevelde <sup>4,5</sup><sup>0</sup> and David Moens <sup>6</sup><sup>0</sup>

https://doi.org/10.3390/en14041016





| OVERVIEW | INTRODUCTION TO UNCERTAINTY | REAL-WORLD APPLICATIONS | SUMMARY | CONCLUSION |  |
|----------|-----------------------------|-------------------------|---------|------------|--|
|          |                             |                         |         |            |  |

### OVERVIEW

### INTRODUCTION TO UNCERTAINTY Types of Uncertainty Simple Example of Epi Uncertainty Dealing with Epistemic Uncertainty

- REAL-WORLD APPLICATIONS From Epistemic to Decisions
- **4** SUMMARY
- **6** CONCLUSION
- **6** Q&A



| OVERVIEW | INTRODUCTION TO UNCERTAINTY |
|----------|-----------------------------|
|          |                             |

REAL-WORLD APPLICATIONS

SUMMARY

CONCLUSION 000





Mechatronic System Dynamics (LMSD), Mechanical Engineering Dep. KU Leuven

Spoorwegstraat 12 8200 Brugge | BELGIUM

keivan.shariatmadar@kuleuven.be

https://www.kuleuven.be/wieiswie/en/person/00115080





REAL-WORLD APPLICATIONS

SUMMARY

CONCLUSION Q&A

# Questions?

### Be Uncertain about the Uncertainty...



"How NASA in Silicon Valley Will Use Webb to Study Distant Worlds. NASA's James Webb Space Telescope gives scientists new tools to search for the building blocks of life on distant planets.

NASA's James Webb Space Telescope is getting ready to give us the best view of worlds beyond our solar system, commonly known as exoplanets. Scientists at NASA's Ames Research Center in California's Silicon Valley will be among the first to observe the cosmos with Webb, and they're looking for clues about how exoplanets form, what they're made of, and whether any could be potentially habitable. On Jan. 24, 2022, the telescope reached its destination, an orbit about one million miles from Earth around a location called Sun-Earth Lagrange point 2, also known as L2. Now, Webb is one step closer to launching its scientific mission to transform our understanding of the universe."



