Let's Meet 12/10/2021

Computer Science @Bruges Campus Embedded Software Resilience

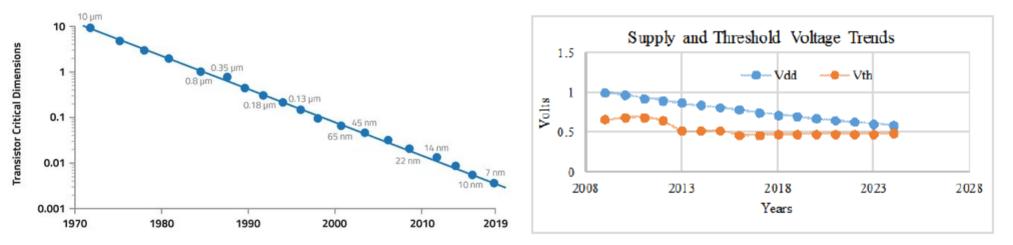
dr. ing. Jens Vankeirsbilck

Research @ Computer Science Bruges Campus

- Part of M-Group \rightarrow focus on Connected Mechatronic Systems
 - Ultimate machine
 - Ultimate factory
- Focus on Dependability and Safety
 - Reliable communication (Bozheng, Kristof, Pejman)
 - Smart condition monitoring (Chandu, Jens D., Paul)
 - Certain Artificial Intelligence (Calvin, Keivan)
 - CoMovelt (spin-off) (Sotirios)
 - Resilient embedded systems (Mohaddaseh, Brent, Jens Vkb)

- prof. Jeroen Boydens
- prof. Hans Hallez
- prof. Mathias Verbeke

Embedded Software Resilience

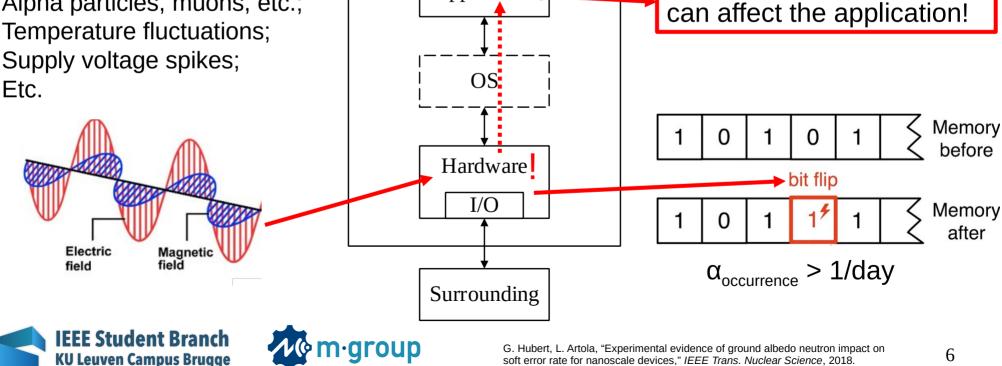

- 1) Problem Statement
- 2) Software-implemented Solutions
- 3) Software-implemented Testing
- 4) People

Technological advances...

Transistor Size

Voltage Trend

Shrinking Transistor sizes and Lower operating voltages have created more powerful and energy efficient processors (devices)


5

Embedded systems are vulnerable to external disturbances!

Embedded System

External disturbances:

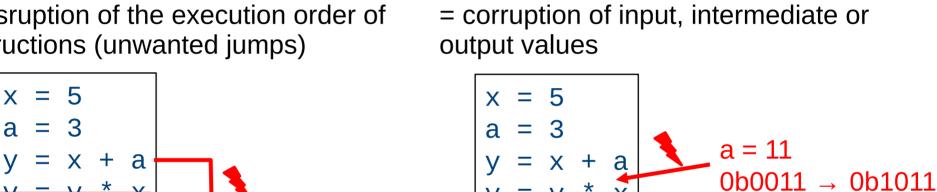
- Electromagnetic Interference;
- Alpha particles, muons, etc.;
- Temperature fluctuations;

Application

The introduced bit-flips

Erroneous bit-flips can affect the application A closer look at the introduced errors

Control Flow Error


+

No corruption,

z will be 43

a

= disruption of the execution order of instructions (unwanted jumps)

Data Flow Error

+

No corruption,

z will be 43

a corrupted to 11,

z will be 51, not 43

Erroneous jump

z will be 11, not 43

Erroneous bit-flip detection

Hardware Detection

= duplicate systems and add voting logic

- + Effective
- High cost
- Low flexibility

Software-implemented Detection

= insert extra instruction that enable error detection

- + High flexibility
- + No need for extra hardware = lower cost / system
- Difficult to implement
- Introduce overhead

- 1) Problem Statement
- 2) Software-implemented Solutions
- 3) Software-implemented Testing
- 4) People

Control Flow Error Detection

S = 0x = 5s = s + 1a = 3 = s + 1S = x + a V * = = s + 1S v + a Ζ = s = s + 1if s != 5 then call errorHandler No corruption, z will be 43

Erroneous jump s will be 4, not 5

 \rightarrow error handler is called and

the system can deal with the error

Data Flow Error Detection

Research

- Control Flow Error Detection (Jens Vkb)
 - New and better Techniques: RASM and RACFED
 - Compiler plugin to automate technique implementation (not discussed today)
- Data Flow Error Detection (Venu B. Thati)
 - New and better Techniques: FDSC and ILDCC

- 1) Problem Statement
- 2) Software-implemented Solutions
- 3) Software-implemented Testing
- 4) People

Detection technique verification and validation

- Once implemented, the detection mechanism must be validated \rightarrow faults must occur in the system

Option 1: ad hoc

Option 2: fault injection

Research

- Developed new fault injection processes
- Implemented a fault injection tool
 - For physical targets (Python) connecting to on-chip debugger
 - For simulated targets (C++) from the Imperas simulator

- 1) Problem Statement
- 2) Software-implemented Solutions
- 3) Software-implemented Testing
- 4) People

Overview of Researchers

prof. Jeroen Boydens prof. Hans Hallez

dr. ing. Jens Vankeirsbilck

dr. ing. Venu Babu Thati (graduated Apr. 2020)

ing. Brent De Blaere

Mohaddaseh Nikseresht

