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Research 
@ Computer Science Bruges Campus

● Part of M-Group → focus on Connected Mechatronic Systems
– Ultimate machine
– Ultimate factory

● Focus on Dependability and Safety
– Reliable communication (Bozheng, Kristof, Pejman)

– Smart condition monitoring (Chandu, Jens D., Paul)

– Certain Artificial Intelligence (Calvin, Keivan)

– CoMoveIt (spin-off) (Sotirios)

– Resilient embedded systems (Mohaddaseh, Brent, Jens Vkb)

● prof. Jeroen 
Boydens

● prof. Hans 
Hallez

● prof. Mathias 
Verbeke
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Embedded Software Resilience
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Overview

1) Problem Statement

2) Software-implemented Solutions

3) Software-implemented Testing

4) People
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Technological advances...

Transistor Size Voltage Trend

Shrinking Transistor sizes and Lower operating voltages have 
created more powerful and energy efficient processors (devices)

https://semiengineering.com/scaling-up-and-down/ 
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scali
ng-with-advancement-in-CMOS_fig1_274254911
 

https://semiengineering.com/scaling-up-and-down/
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scaling-with-advancement-in-CMOS_fig1_274254911
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scaling-with-advancement-in-CMOS_fig1_274254911
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Embedded systems are vulnerable to 
external disturbances!

Embedded System

Surrounding

Application

OS

Hardware

I/O

External disturbances:
• Electromagnetic Interference;
• Alpha particles, muons, etc.;
• Temperature fluctuations;
• Supply voltage spikes;
• Etc.

!

! The introduced bit-flips 
can affect the application!

αoccurrence > 1/day 

G. Hubert, L. Artola, “Experimental evidence of ground albedo neutron impact on 
soft error rate for nanoscale devices,” IEEE Trans. Nuclear Science, 2018.
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Erroneous bit-flips can affect the application
A closer look at the introduced errors
Control Flow Error
= disruption of the execution order of 
instructions (unwanted jumps)

Data Flow Error
= corruption of input, intermediate or 
output values

x = 5
a = 3
y = x + a
y = y * x
z = y + a

No corruption,
z will be 43

Erroneous jump
z will be 11, not 43

x = 5
a = 3 
y = x + a
y = y * x
z = y + a

a = 11
0b0011 → 0b1011

a corrupted to 11,
z will be 51, not 43

No corruption,
z will be 43
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Erroneous bit-flip detection

Hardware Detection
= duplicate systems and add voting 
logic

+ Effective

- High cost

- Low flexibility

Software-implemented Detection
= insert extra instruction that enable error 
detection

+ High flexibility

+ No need for extra hardware
   = lower cost / system

- Difficult to implement

- Introduce overhead
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Control Flow Error Detection
s = 0
x = 5
s = s + 1
a = 3
s = s + 1
y = x + a
s = s + 1
y = y * x
s = s + 1
z = y + a
s = s + 1
if s != 5 then
   call errorHandler

No corruption,
z will be 43

Erroneous jump
s will be 4, not 5
→ error handler is called and
     the system can deal with the error
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Data Flow Error Detection

x = 5
x_dup = 5
a = 3
a_dup = 3 
y = x + a
y_dup = x_dup + a_dup
y = y * x
y_dup = y_dup * x_dup
z = y + a
z_dup = y_dup + a_dup
If z != z_dup then
   call errorHandler 

a = 11
0b0011 → 0b1011

No corruption,
z will be 43

a corrupted to 11,
z will be 51, z_dup will be 43
→ error handler is called and
     the system can deal with the error
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Research
● Control Flow Error Detection (Jens Vkb)

– New and better Techniques: RASM and RACFED
– Compiler plugin to automate technique implementation

(not discussed today)

● Data Flow Error Detection (Venu B. Thati)
– New and better Techniques: FDSC and ILDCC
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Detection technique 
verification and validation

● Once implemented, the detection mechanism must be validated
→ faults must occur in the system

Option 2: fault injectionOption 1: ad hoc
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Research
● Developed new fault injection processes
● Implemented a fault injection tool

– For physical targets (Python) connecting to on-chip debugger
– For simulated targets (C++) from the Imperas simulator
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Overview of Researchers

prof. Jeroen Boydens
prof. Hans Hallez

dr. ing. Jens 
Vankeirsbilck

dr. ing. Venu 
Babu Thati

(graduated Apr. 2020)

ing. Brent De 
Blaere

Mohaddaseh 
Nikseresht
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