
Let’s Meet
12/10/2021

Computer Science @Bruges Campus
Embedded Software Resilience

dr. ing. Jens Vankeirsbilck

2

Research
@ Computer Science Bruges Campus

● Part of M-Group → focus on Connected Mechatronic Systems
– Ultimate machine
– Ultimate factory

● Focus on Dependability and Safety
– Reliable communication (Bozheng, Kristof, Pejman)

– Smart condition monitoring (Chandu, Jens D., Paul)

– Certain Artificial Intelligence (Calvin, Keivan)

– CoMoveIt (spin-off) (Sotirios)

– Resilient embedded systems (Mohaddaseh, Brent, Jens Vkb)

● prof. Jeroen
Boydens

● prof. Hans
Hallez

● prof. Mathias
Verbeke

3

Embedded Software Resilience

4

Overview

1) Problem Statement

2) Software-implemented Solutions

3) Software-implemented Testing

4) People

5

Technological advances...

Transistor Size Voltage Trend

Shrinking Transistor sizes and Lower operating voltages have
created more powerful and energy efficient processors (devices)

https://semiengineering.com/scaling-up-and-down/
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scali
ng-with-advancement-in-CMOS_fig1_274254911

https://semiengineering.com/scaling-up-and-down/
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scaling-with-advancement-in-CMOS_fig1_274254911
https://www.researchgate.net/figure/Trends-for-transistor-supply-and-threshold-voltage-scaling-with-advancement-in-CMOS_fig1_274254911

6

Embedded systems are vulnerable to
external disturbances!

Embedded System

Surrounding

Application

OS

Hardware

I/O

External disturbances:
• Electromagnetic Interference;
• Alpha particles, muons, etc.;
• Temperature fluctuations;
• Supply voltage spikes;
• Etc.

!

! The introduced bit-flips
can affect the application!

αoccurrence > 1/day

G. Hubert, L. Artola, “Experimental evidence of ground albedo neutron impact on
soft error rate for nanoscale devices,” IEEE Trans. Nuclear Science, 2018.

7

Erroneous bit-flips can affect the application
A closer look at the introduced errors
Control Flow Error
= disruption of the execution order of
instructions (unwanted jumps)

Data Flow Error
= corruption of input, intermediate or
output values

x = 5
a = 3
y = x + a
y = y * x
z = y + a

No corruption,
z will be 43

Erroneous jump
z will be 11, not 43

x = 5
a = 3
y = x + a
y = y * x
z = y + a

a = 11
0b0011 → 0b1011

a corrupted to 11,
z will be 51, not 43

No corruption,
z will be 43

8

Erroneous bit-flip detection

Hardware Detection
= duplicate systems and add voting
logic

+ Effective

- High cost

- Low flexibility

Software-implemented Detection
= insert extra instruction that enable error
detection

+ High flexibility

+ No need for extra hardware
 = lower cost / system

- Difficult to implement

- Introduce overhead

9

Overview

1) Problem Statement

2) Software-implemented Solutions

3) Software-implemented Testing

4) People

10

Control Flow Error Detection
s = 0
x = 5
s = s + 1
a = 3
s = s + 1
y = x + a
s = s + 1
y = y * x
s = s + 1
z = y + a
s = s + 1
if s != 5 then
 call errorHandler

No corruption,
z will be 43

Erroneous jump
s will be 4, not 5
→ error handler is called and
 the system can deal with the error

11

Data Flow Error Detection

x = 5
x_dup = 5
a = 3
a_dup = 3
y = x + a
y_dup = x_dup + a_dup
y = y * x
y_dup = y_dup * x_dup
z = y + a
z_dup = y_dup + a_dup
If z != z_dup then
 call errorHandler

a = 11
0b0011 → 0b1011

No corruption,
z will be 43

a corrupted to 11,
z will be 51, z_dup will be 43
→ error handler is called and
 the system can deal with the error

12

Research
● Control Flow Error Detection (Jens Vkb)

– New and better Techniques: RASM and RACFED
– Compiler plugin to automate technique implementation

(not discussed today)

● Data Flow Error Detection (Venu B. Thati)
– New and better Techniques: FDSC and ILDCC

13

Overview

1) Problem Statement

2) Software-implemented Solutions

3) Software-implemented Testing

4) People

14

Detection technique
verification and validation

● Once implemented, the detection mechanism must be validated
→ faults must occur in the system

Option 2: fault injectionOption 1: ad hoc

15

Research
● Developed new fault injection processes
● Implemented a fault injection tool

– For physical targets (Python) connecting to on-chip debugger
– For simulated targets (C++) from the Imperas simulator

16

Overview

1) Problem Statement

2) Software-implemented Solutions

3) Software-implemented Testing

4) People

17

Overview of Researchers

prof. Jeroen Boydens
prof. Hans Hallez

dr. ing. Jens
Vankeirsbilck

dr. ing. Venu
Babu Thati

(graduated Apr. 2020)

ing. Brent De
Blaere

Mohaddaseh
Nikseresht

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

