

Encoded features for robust Inter-conditional bearing fault diagnosis

12/10/2021

Chandrakanth Kancharla

Prof. dr. ir. Hans Hallez

Prof. dr. ing. Jeroen Boydens

70% costs are for servicing

9 out of 10 machines are offline

"Replace" or "Retrofit"

Introduction Context Transfer Learning Initial results Task at hand

- Higher throughput needed
- Increased Latency
- Occupies the bandwidth
- Affects the existing operations
- Source of Interference

Traditional learning:

Deep learning:

General data availability:

No fault/ clean
Artificial/
corrupted
Natural

Condition a Condition b Condition c Condition d

Easy

Very hard

Autoencoder:

$$L = |x - x'|^2$$

Transfer Learning:

Bearing fault datasets:

- CWRU (Vibration data)
 - Conditions: Different loads (4)
 - Classes: Inner race, Outer race, Bearing and no fault
- Paderborn (Vibration data)
 - Conditions: Different axial, radial loads & rotating speeds (4)
 - Classes: Inner race, Outer race, Bearing and no fault (Artificial and natural)

-40

Task at hand

Experimentation: Training

Experimentation: Inference

Results: CWRU dataset

Source only method							Source only method
Transfer Task	SVM	CNN	CNN-MMD	MDDAN	MDIAN	CMD	MLCAE-KNN
$C0 \rightarrow C1$	70.70	72.25	81.00	87.15	99.60	_	100
$C0 \rightarrow C2$	66.45	70.55	79.90	90.60	99.30	95.54	100
$C0 \rightarrow C3$	63.40	62.45	55.85	91.65	99.10	99.54	100
$C1 \rightarrow C0$	71.30	87.30	88.95	84.00	99.70	_	100
$C1 \rightarrow C2$	70.00	89.80	88.70	92.40	99.65	_	100
$C1 \rightarrow C3$	74.00	74.70	80.50	94.20	99.80	_	100
$C2 \rightarrow C0$	62.85	60.35	64.65	87.40	97.60	100	99.8
$C2 \rightarrow C1$	61.60	75.50	79.80	91.95	99.45	-	99.7
$C2 \rightarrow C3$	67.65	84.30	79.95	91.50	99.45	96.9	100
$C3 \rightarrow C0$	65.30	66.90	75.25	84.25	97.45	100	99.9
$C3 \rightarrow C1$	65.70	81.15	71.15	87.35	98.60	-	99.9
$C3 \rightarrow C2$	63.25	74.95	74.85	92.15	99.50	100	100

Results: Paderborn dataset

Results summary:

- Results were promising, especially compared to source only literature
- It was better for many tasks even when compared to TL with adaptation
- Can we consider this to be better than the existing TL methods?

Further work:

- Pseudo labeling and classifier retraining based on probabilistic KNN
- This method as co compression and classification algorithm to reduce data bandwidth
- Testing the same on other datasets