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Introduction Context Transfer Learning Initial results Task at hand

9 out of 10

machines are offline

70% costs

are for servicing

“Replace” or “Retrofit”
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Introduction Context Transfer Learning Initial results Task at hand

oHigher throughput needed

o Increased Latency

oOccupies the bandwidth

oAffects the existing operations

oSource of Interference
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Sensors & actuators
Acquisition &

processing
Gateway Cloud

Object layer

Abstraction layer

Service management layer

Application layer

Business layer
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Traditional learning:

Knowledge 
of the 

domain

Extract 
features

Use those 
to classify
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Deep learning:

Knowledge 
of the 

domain

Extract 
features

Use those 
to classify
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General data availability:

Condition a Condition b Condition c Condition d

No fault/ clean

Artificial/ 

corrupted

Natural

Easy

Very hard
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Autoencoder:

Latent dim

L= |𝑥 − 𝑥′|2

Encoder Decoder

mean: 0.8 

skewness: 0.7

,

Zero crossings: 0.8
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Multi layer Conv Autoencoder
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Considered architecture:

20

Data: Condition a

Classifier

Cloud

Microcontroller

DA

Classifier

Class output

Known class?

TX compressed

> 90%

Not 
TX class

Reconstructed data

Data: Condition b
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Transfer Learning:
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Trained classifier Reused classifier

Transfer without 

target data

Trained classifier

Adapted classifier

Transfer by adapting 

to target data

Condition a

Condition b

Class 1

Class 2

Class 3

Class 4
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Bearing fault datasets:
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• CWRU (Vibration data)

• Conditions: Different loads (4)

• Classes: Inner race, Outer race, Bearing and no fault

• Paderborn (Vibration data)

• Conditions: Different axial, radial loads & rotating speeds (4)

• Classes: Inner race, Outer race, Bearing and no fault (Artificial and natural)
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Experimentation: Training

Bruges Campus
M-Group, Department of Computer Science

Transfer LearningIntroduction Context Initial results Task at hand



15

Experimentation: Inference
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Results: CWRU dataset
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Source only method Source only method
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Results: Paderborn dataset
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Results summary:

• Results were promising, especially compared to source only literature

• It was better for many tasks even when compared to TL with adaptation

• Can we consider this to be better than the existing TL methods?
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Further work:

• Pseudo labeling and classifier retraining based on probabilistic KNN

• This method as co compression and classification algorithm to reduce data 

bandwidth

• Testing the same on other datasets


