Should my Electric Vehicle be used for **my benefit** or for the **greater good**?

Alicia Blatiak & Federica Bellizio

Control and Power Research Group, EEE

The Story of Tim

Now picture the future...

Electric Vehicles are coming!

UK Government

- Banned the sale of new petrol / diesel (2030)

- Mandated smart-charging on public chargers

Future Energy Scenarios Report 2021, National Grid

What is Vehicle-to-Grid?

Could go either way...

GB Winter Peak System Demand from EV Charging

'Consumer Transformation' from Future Energy Scenarios Report 2021, National Grid

So, what can I do with my energy?

How does this look?

Smart Charging

Imperial College London

EVs using energy for travelling

EVs charging when price is lowest (2am)

Smart Charging

Imperial College London

EVs charging when price is lowest (2am)

Imperial College Energy Arbitrage (V2G)

EVs charging when price is lowest (at night)

EVs discharging when prices high

Imperial College Energy Arbitrage (V2G)

EVs charging when price is lowest (at night)

EVs discharging when prices high

How do the charging modes compare?

To summarise...

EV owners can use the high flexibility EVs have to offer to:

- Reduce their electricity bills with a time-of-use tariff
- Earn money by buying and selling energy (to the grid or to their neighbours)
- Reduce the electricity peak nationally by controlling their charging

Introducing the 'greater good'

Challenges in modern power system

- Lots of renewable generation
 - Integrated distributed resources
- Decentralised control
- Bidirectional power flow
- Low inertia

UK frequency, 9th August 2019

Were we just lucky?

Preventive control can fail

Unlock the real value of EVs

- Support the grid when preventive fails (frequency response)
- Help balancing supply/demand
- Raise pre-fault transfer limits
- Reduce CO2
 emissions

How EVs can support operators?

- Enhance the utilization of the grid assets
- Avoid investments in new grid infrastructure
- Reduce operating/generation costs
- Prevent renewable power curtailment

0s

Prove the value of EVs

Data-driven approach to optimise the use of EVs in real-time

Some interesting results

	No control	Wind curtailment	Preventive + EVs
Unstable conditions	990/1000	510/1000 - <mark>£3</mark> .	0/1000 7m
	- 80m kg of CO2		

- The low inertia of the system makes 99% of post-fault operating conditions unstable
- Assuming 2/3 faults are expected every day, the system could experience ~1000 faults per year

How do the charging modes compare?

To summarise...

How EV owners can support the grid operation:

- Reduce investment, operating and generation costs
- Improve the system's reliability (fewer blackouts!)
- Support the transition towards a low-carbon economy

