
Future
Innovators
Workshop
Handbook
Prepared by the IEEE UNT Student Branch

For comments, questions, or suggestions, contact Revision Date: February 19, 2021Nicholas Chiapputo at nicholaschiapputo@my.unt.edu

mailto:nicholaschiapputo@my.unt.edu

CONTENTS i

Contents
1 Introduction 1

1.1 Welcome to the Future Innovators Workshop 1
1.2 Arduino . 1
1.3 Arduino IDE . 2
1.4 Breadboard . 3
1.5 Voltage . 4
1.6 Current . 4
1.7 Resistance . 4

2 Level 1 Projects 6
2.1 Pushbutton LED . 6
2.2 Tunable LED Brightness . 8

3 Level 2 Projects 10
3.1 Basic Buzzer . 10
3.2 Programmable Buzzer . 12

4 Level 3 Projects 16
4.1 Ultrasonic Security System . 16

5 Level 4 Projects 25
5.1 TFT Etch-a-Sketch . 25

CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Welcome to the Future Innovators Workshop

1.2 Arduino

Arduino is an open-source electronics hardware and software company that designs sin-
gle board microcontrollers. The company produces many di�erent microcontrollers. One
of the most popular is the Arduino Uno. This is the one included in your kit.

Figure 1.1: Arduino Uno

Arduino’s goal is to make easy-to-use tools for learning and teaching circuits and pro-
gramming with a low-cost system. They are one of the leaders in Do-It-Yourself (DIY)
electronics. Using their microcontrollers is one of the best starting points for getting
into the world of electronics.
To interface with circuits, the Arduino Uno has multiple ports on the device itself. These
ports are little holes along the edge of the board. By connecting a wire from one of these
holes to a circuit, the Arduino can send and receive signals to perform any number of
operations.
The Arduino Uno has 13 digital ports, labeled “1” through “‘13” on one side of the board.
On the other side, there are 5 analog ports labeled “A0” through “A5”.

CHAPTER 1. INTRODUCTION 2
Additional Resources:
Arduino’s website: https://www.arduino.cc/
Arduino tutorials and examples: https://www.arduino.cc/en/Tutorial/HomePage/
https://www.arduino.cc/en/Guide/ArduinoUno/
The Arduino Uno Microcontroller is the key component of the Future Innovators Work-
shop kit. A Microcontroller is a small computer on an integrated circuit (IC). The micro-
controller contains one or more CPUs, memory and programmable input/output periph-
erals. Microcontrollers are used in many electronic and automated products, such as,
implantable medical devices, remote controls, o�ce machines, appliances, power tools
and toys.
The microcontroller has ports or registers that allow for a program to control (Outputs)
or read (Inputs) the state of the pins. Ports are made up of pins, which are the individual
input or output legs of the IC.
For the workshop, we will be using the Arduino Uno microcontroller to control light emit-
ting diodes (LED), operate buzzers, count in binary, make an Infrared remote and more.
Pairing the Arduino Uno, various electronic components and imagination virtually any-
thing can be created.

1.3 Arduino IDE

Arduino Integrated Development Environment (IDE) is an application written in C and
C++ that is used to write and upload programs to Arduino compatible boards.
Arduino IDE can be downloaded by visiting the Arduino’s website
(https://www.arduino.cc/en/software/) and clicking on the download option that matches
your computer operating system.
Arduino IDE contains a text editor for writing code, a message area, a text console, a
toolbar with buttons for common functions and a series of menus. In the white text
editor space, insert the desired code and hit the check mark button to verify the code.
Don’t forget to save the code often. Each code is called a sketch in Arudino IDE. After
the code is verified, connect the Arduino board through the provided usb cord to the
computer and click the right arrow button in the Arduino IDE to upload the program to

CHAPTER 1. INTRODUCTION 3
the Arduino Uno microcontroller. Once the program has been uploaded, disconnect the
Arduino Uno from the usb cord. The process listed above can be repeated as many times
as needed to achieve the desired result.

1.4 Breadboard

A Breadboard is a solderless device with a plastic exterior, numerous openings and inter-
nal metal strips that accept many di�erent electrical components. It is used for proto-
typing or creating early samples/products/models with the key benefit that it is reusable
and allows for easy modification of circuits by plugging and unplugging components.
Internally, the outer power rail columns are wired together and the inner rows are wired
together (see Figure below for internal connections). Components that are connected in
the circuit diagram are inserted into the same row of the breadboard. The large space in
the center is built for integrated circuit (IC) chips to straddle so each pin is connected
to a di�erent row.

Figure 1.2: Solderless breadboard and internal connections.

It is important to remember how the breadboard rows and columns are connected as it
will impact our circuits moving forward. To utilize the breadboard, push the metal legs
of the components firmly into the opening. You can test if the component is secured

CHAPTER 1. INTRODUCTION 4
by very lightly pulling up on the component. Another important thing to consider when
inserting components into the breadboard is the orientation of the component.
IMPORTANT: For safety, disconnect or turn o� the power supply prior to adding or
removing any components from the breadboard.

1.5 Voltage

Voltage represents the potential electrical di�erence between two points. Voltage is the
pressure that causes the flow of electric current in a circuit. The mechanical equivalent
for voltage would be pressure that pushes water through a pipe.
Voltage is measured in the units of volts, named after the Italian physicist Alessandro
Volta. Volts are identified by the symbol V.

1.6 Current

Current is the rate of flow of electrons in a circuit. The mechanical equivalent for current
would be the amount of water passing through a pipe. It is important to know that
current flows from a point of higher potential energy to a point of lower potential energy
or current follows the path of least resistance in a circuit. Current can be thought of as
water flowing from a higher elevation to a lower elevation.
The units of current are Amperes, named after French mathematician and physicist Andre-
Marie Ampere. Amperes is often abbreviated to Amps or A.

1.7 Resistance

Resistors are an electronic component that limits or resists the flow of electrons through
a circuit. Resistors have a fixed electrical resistance value called ohms, with the symbol
Ω. In our mechanical analogy, resistors represent the size of the pipe which limits the
amount of water that can pass through it.

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Resistor Color Code Chart

The resistance value of the resistors can be identified by the colored bands on the body
of the resistor.

CHAPTER 2. LEVEL 1 PROJECTS 6

2 Level 1 Projects

2.1 Pushbutton LED

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Breadboard
• 1x LED
• 1x 330 Ω Resistor
• 1x Pushbutton

Steps
1. Place the pushbutton so that it straddles the river on the breadboard. The legs of

the pushbutton should be bending so that they are pointing perpendicular (away
from) the river.

2. Place the LED so that the anode (long leg) is in the positive power rail of the bread-
board. Place the cathode (short leg) in the same row as one of the legs of the
pushbutton.

3. Place the resistor so that one leg is in the negative power rail of the breadboard.
Place the other leg in the same row as the other leg of the pushbutton.

4. To power the circuit, take the first wire and plug one end into the “5V” port on the
Arduino. Place the other end into the positive power rail on the breadboard.

5. To complete the circuit, take the second wire and plug one end into the “GND” port
on the Arduino. Place the other end into the negative power rail on the breadboard.

6. Plug the Arduino into your computer’s USB port to turn power on. The LED should
remain o� by default. To turn the LED on, press and hold the pushbutton

CHAPTER 2. LEVEL 1 PROJECTS 7
Circuit

Figure 2.1: Circuit representation for the pushbutton LED project.

CHAPTER 2. LEVEL 1 PROJECTS 8
2.2 Tunable LED Brightness

Parts Required
• 1x Arduino + USB Cable
• 3x Wires
• 1x Breadboard
• 1x LED
• 1x 330 Ω Resistor
• 1x Potentiometer

Steps
1. Place the potentiometer so that the three pins are all in separate rows on the bread-

board.
2. Place the LED so that the short leg (the cathode) is in a row by itself and the long

leg (the anode) is in the same row as the middle pin on the potentiometer.
3. Place the resistor so that one leg is in the negative power rail column (next to the

blue line) and the other leg is in the same row as the long leg on the LED.
4. Place wires:

a) Place a wire with one end on the Arduino in the hole labeled “5V”. This will
provide power to the circuit. Place the other end of the wire into a row with
the leftmost pin of the potentiometer.

b) Place a second wire with one on the Arduino in one of the holes labeled “GND”.
Place the other end of the wire in the same row as the rightmost pin of the
potentiometer.

c) Take a third wire and place one end in the negative power rail column (next
to the blue line) and place the other end on the Arduino in the remaining hole
with the “GND” label.

5. Plug the Arduino into your computer’s USB port to turn power on. Adjust the po-
tentiometer to change the LEDs brightness. Turning it toward the left will make the
LED dimmer until it turns o�. Turning it to the right will make the LED increase in
brightness.

CHAPTER 2. LEVEL 1 PROJECTS 9
Circuit

Figure 2.2: Circuit representation for the tunable LED brightness project.

CHAPTER 3. LEVEL 2 PROJECTS 10

3 Level 2 Projects

3.1 Basic Buzzer

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Buzzer

Steps
1. Place the pushbutton so that it straddles the river on the breadboard. The legs of

the pushbutton should be bending so that they are pointing perpendicular (away
from) the river.

2. Place the buzzer so that the long leg is in the same row as one of the legs of the
pushbutton. Placing it further away from the pushbutton will make it easier to place
wires later as the buzzer covers most of the row.

3. To power the circuit, take the first wire and plug it into the “5V” port on the Arduino.
Place the other end of the wire in the same row as the empty leg above or below
the buzzer, depending on where you placed the buzzer.

4. To complete the circuit, take the second wire and plug it into the same row as the
short leg of the buzzer (the one not connected to the pushbutton).

5. To turn the buzzer on, press and hold the pushbutton. You should hear a loud,
high-pitched sound. To change the tone, follow the “Programmable Buzzer” project
example.

CHAPTER 3. LEVEL 2 PROJECTS 11
Circuit

Figure 3.1: Circuit representation for the basic buzzer project.

CHAPTER 3. LEVEL 2 PROJECTS 12
3.2 Programmable Buzzer

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Buzzer

Steps
• Building the Circuit

1. Place the buzzer on the breadboard so that the two pins are in separate rows.
2. Take the first wire and plug one end into the Arduino port labeled “9”. This is

a digital output port with PWM capability. Place the other end of the wire into
the same row as the long pin on the buzzer.

3. To complete the circuit, take the second wire and plug it into the “GND” port
on the Arduino. Place the other end of the wire into the same row as the short
pin on the buzzer.

4. You shouldn’t hear anything from the buzzer just yet. To configure how the
buzzer will work, we need to write the program using the Arduino IDE and
upload it onto the Arduino.

• Writing the Program

1. The script for this program is found below in the Program section. We will
walk through the steps to recreate this script in your editor. First, open up the
Arduino IDE on your computer. Create a new sketch with Ctrl+N.

2. In the new script, we need to define the port we have connected the buzzer
to. In the previous steps, we connected it to pin 9, so we will define that with
the line const u in t8_t buzzer = 9; at the top of the file on line 1.

3. In the setup function, we need to tell the Arduino that our buzzer pin will be
used as an output to send a signal out from the Arduino. To do this, we use
the pinMode function. The first argument is the port we are using, buzzer, and
the second argument sets the mode for the pin. In this case, we are using the
buzzer pin as an output, so we write the line pinMode (buzzer , OUTPUT) ; .

CHAPTER 3. LEVEL 2 PROJECTS 13
4. The loop function will be executed for as long as the Arduino is powered on.

Once it finishes executing the commands within the function, it loops back to
the top of the function and continues again. On line 8, we use the tone function
to tell the buzzer to emit a tone. This function takes three values: the pin the
buzzer is connected to, the frequency of the tone, and the duration of the tone.
We pass the variable buzzer to define the pin and use the value 440 to define
a 440 Hz tone (or A3). The duration is given as 100 ms so the buzzer will emit
a 440 Hz tone for 0.1 seconds.

5. In order for us to hear the buzzer beeping instead of one long tone, we add
a delay function call on line 9 after we call the tone function. This will stop
the Arduino from continuing for a set amount of time. This time is defined in
milliseconds using the single value passed to it. In our example, we have told
the Arduino to wait for 200 milliseconds. This value is equal to the duration
of the tone plus 100 milliseconds. This small amount of time gives our ears
enough time to hear a pause between the tones so that we can hear the buzzer
beeping.

6. Now that we have written the program, we can verify that it is correct by click-
ing the checkmark button on the top left of the Arduino IDE. This button will
verify that we have written the code correctly by compiling the program and
checking for any syntax errors. The output will be shown in the area at the bot-
tom of the Arduino IDE. If you see any errors, go through the provided script
again to make sure you typed everything correctly.

7. Once we have verified that the program is correct, we can upload the program
to the Arduino. Plug the Arduino in to the computer using the USB cable and
click on the arrow button next to the checkmark button. This will initiate the
upload sequence to the Arduino. You can track the progress on the bottom of
the window. Once complete, the Arduino IDE will say “Done uploading.” at the
bottom of the editor above the output panel.

8. If you have connected the circuit correctly, you will hear the buzzer beeping
rapidly about five times per second. Since we haven’t added a way to turn it
o�, simply unplug one of the wires from the breadboard or unplug the Arduino
from the computer to remove power and stop it.

CHAPTER 3. LEVEL 2 PROJECTS 14
Circuit

Figure 3.2: Circuit representation for the programmable buzzer project.

CHAPTER 3. LEVEL 2 PROJECTS 15
Program

1 const u in t8_t buzzer = 9;
2
3 void setup () {
4 pinMode (buzzer , OUTPUT) ;
5 }
6
7 void loop () {
8 tone (buzzer , 440, 100) ;
9 delay (200) ;

10 }

CHAPTER 4. LEVEL 3 PROJECTS 16

4 Level 3 Projects

4.1 Ultrasonic Security System

Parts Required
• 1x Arduino + USB Cable
• 1x Ultrasonic Sensor HC-SR04
• 8x Wires
• 1x Buzzer
• 1x LED
• 1x 330Ω Resistor

Steps
• Building the Circuit

1. Place the ultrasonic sensor so that each of the four legs are in a di�erent row
on the breadboard. Make sure that the sensor is facing away from the Arduino
and any wires so that it does not get any false readings and sound the alarm
because of the Arduino or the wires.

2. Place the buzzer so that the two pins are in separate, empty rows on the bread-
board.

3. Place the resistor so that one leg is in the same row as the short leg of the
buzzer and the other leg is in an empty row on the breadboard.

4. Place the LED so that the anode (long leg) is in an empty row on the breadboard
and the cathode (short leg) is in the same row as the second leg of the resistor
from the previous step.

5. Take one wire and plug one end into pin “13” on the Arduino. Plug the other
end into a hold on the breadboard in the same row as the pin labeled “Trig”
on the ultrasonic sensor.

CHAPTER 4. LEVEL 3 PROJECTS 17
6. Take a second wire and plug one end into pin “12” on the Arduino. Plug the

other end into a hold on the breadboard in the same row as the pin labeled
“Echo” on the ultrasonic sensor.

7. To control the LED, we take the third wire and plug one end into pin “8” on the
Arduino and the other end into the same row as the anode (long leg) of the
LED on the breadboard.

8. To control the buzzer, plug one end of the fourth into pin “9” on the Arduino
and the other end into the same row as the long leg of the buzzer on the
breadboard.

9. To connect the LED and buzzer to the ground reference, take the fifth wire and
plug one end into the negative power rail on the breadboard. Plug the other
end into a hole in the breadboard in the row with the short leg of the buzzer
and one leg of the resistor.

10. To connect the ultrasonic sensor to the ground reference, plug one end of the
sixth wire into the breadboard in the same row as the sensor’s “Gnd” pin and
the other end into the negative power rail.

11. To power the sensor, take the seventh wire and plug one end into the bread-
board in the same row as the ultrasonic sensor’s “Vcc” pin and the other end
into the Arduino’s “5V” port.

12. To complete the circuit, take the eighth wire and plug one end into one of the
Arduino’s “GND” ports and plug the other end into any hold in the negative
power rail on the breadboard.

13. Once you have built the circuit, continue on to the Arduino steps to program
the device.

• Writing the Program

1. Create a new project in the Arduino IDE and copy and paste the code in the
following Program section.

2. Make sure you have the HCSR04 (the part number for the ultrasonic sensor in
your kit) library installed in the Library Manager by selecting the menu options
Tools > Manage Libraries... or pressing Ctrl+Shift+I. In the filter search
bar, type in “HCSR04”. Scroll down until you see the entry labeled “HCSR04”

CHAPTER 4. LEVEL 3 PROJECTS 18
with the author name “Martin Sosic”. There are many possible libraries we can
use with the ultrasonic sensor, each with slightly di�erent syntax, but this is
the library we are using for the example. If you have the library installed, it will
say “INSTALLED” next to the version number. Otherwise, hover over the entry
and click “Install” in the bottom right corner. You can now close the Library
Manager.

3. To verify that the library installed correctly, click on the checkmark icon in the
top left to compile the program. If everything is installed correctly, you will see
the message “Done compiling” in the output box at the bottom of the screen.
If you see an error, check that you copied the provided program correctly and
that the library has been installed.

4. Before you upload the program to the Arduino, make sure you read through
the program and understand what it is doing. The code below is commented
(lines that start with two forward slashes //) to show you what it is doing. The
following is a description of how the code works. Once you are done, continue
on to Step 5.

– Line 1 includes the HCSR04 library so that we can use the functions pro-
vided by it to read data from our ultrasonic sensor.

1 #inc lude <HCSR04 . h>

– Lines 3 and 4 define the pins we connected the “Trig” and “Echo” pins to
on the Arduino. As described in the previous section, we have connected
those to pins 13 and 12, respectively.

3 const u in t8_t t r i g g e r = 13; // Pin number connected to "
Tr ig " .

4 const u in t8_t echo = 12; // Pin number connected to "
Echo " .

– Line 5 creates an object that represents our ultrasonic sensor. We need
to tell it which pins we connected the trigger and echo pins to so that it
knows where to send signals to talk to the sensor.

CHAPTER 4. LEVEL 3 PROJECTS 19

5 UltraSonicDistanceSensor distanceSensor (t r igger , echo) ;

– Lines 7 and 8 define the pins where we have connected the buzzer and LED
to. In this case, we have connected them to pins 9 and 8, respectively.

7 const u in t8_t buzzer = 9; // Pin number connected to
buzzer .

8 const u in t8_t led = 8; // Pin number connected to
LED .

– Line 9 defines our alert threshold range in centimeters. By default, we have
set this to 10 centimeters, but you can change this to any whole number
greater than 0. However, the sensor may not be able to pick up very far or
very short distances, so you may want to leave this value between 5 and
20 centimeters.

9 const u in t8_t threshold = 10; // Threshold in cent imeters .

– In the setup function from line 12 to 17, we first initialize our serial com-
munication with baudrate (the speed at which the data is sent) 9600 bits
per second (bps) so that we can send messages from the Arduino back
to the serial monitor. This allows us to see on the computer the output of
our program. We then define the pin mode for the pins connected to the
buzzer and the LED as output modes so that we can turn them on and o�.

12 // Star t s e r i a l communication using baudrate 9600.
13 S e r i a l . begin (9600) ;
14
15 // Set the buzzer and LED pin modes as output .
16 pinMode (buzzer , OUTPUT) ;
17 pinMode (led , OUTPUT) ;

– The loop () function is the main brains of our program and it loops con-
tinuously as long as the Arduino is powered on.

CHAPTER 4. LEVEL 3 PROJECTS 20
– The first thing we do on line 22 is to read the distance to the nearest

object in front of the ultrasonic sensor in centimeters. We do this by calling
the measureDistanceCm () function that is a part of the ultrasonic sensor
object we defined on line 5. We store this value as a double (meaning it is
a fractional number, e.g., 5.2, 10.6, etc.) in the variable distance.

21 // Read the distance in cent imeters .
22 double distance = distanceSensor . measureDistanceCm () ;

– We want to send this information back to the computer so we can see what
the sensor is reading. To do this, we use the serial communication to first
print out the string “Distance: ” on line 26. We then print the decimal
value of the distance in centimeters on line 27. Finally, we provide the
units of the measurement on line 28 by printing out “ cm”. For this last
one, we use the p r i n t l n () function (where l n stands for line) so that
our cursor goes to the next line after we display the information. This way
each measurement can be shown on a separate line.

25 // P r i n t out the distance to the S e r i a l Monitor .
26 S e r i a l . p r i n t (" Distance : ") ;
27 S e r i a l . p r i n t (d istance) ;
28 S e r i a l . p r i n t l n (" cm") ;

– The if statement on line 33 contains our alert logic. In this statement we
are first checking that our distance measurement is valid (meaning that it
is a positive value greater than zero: distance > 0). We need to check
this because, if there is nothing close to the sensor, we don’t read anything
and the output value is -1.0.

31 // Check that we have a v a l i d reading and the distance
32 // i s w i th in our a l e r t threshold .
33 i f (d istance > 0 && distance < threshold)

– If we have a valid distance value, we want to also check if the object is
within the alert range. We do this by first using the syntax “&&” meaning

CHAPTER 4. LEVEL 3 PROJECTS 21
“and”. The second condition is that the distance is less than the threshold
range we set on line 9. Line 33 can be read in English as “if distance is
greater than 0 AND distance is less than threshold, then do the following”.
The “following” means we will execute the commands on lines 35 through
46 if the distance is greater than 0 and is less than our threshold alert
range.

– When we sense an object within our alert range, we want to buzz the
buzzer and blink the LED. To do this, we first turn on the buzzer for 100
milliseconds with a frequency of 440 Hz on line 36 using the tone () com-
mand. We also turn the LED on on line 37. We then wait 100 milliseconds
on line 40 so we can see the LED turn on, then we turn the LED o� on line
43. We then wait another 100 milliseconds on line 46 so that our eyes
can recognize that the LED has turned o�. Otherwise, the code might go
so fast that we can not register that the LED is blinking.

35 // Turn the buzzer and the LED on .
36 tone (buzzer , 440, 100) ;
37 d i g i t a l W r i t e (led , HIGH) ;
38
39 // Wait fo r 100 mi l l i seconds .
40 delay (100) ;
41
42 // Turn the LED o f f .
43 d i g i t a l W r i t e (led , LOW) ;
44
45 // Wait fo r 100 mi l l i seconds .
46 delay (100) ;

– After the alert actions have been executed, or if there was no object within
the alert range, we go back to the beginning of the loop function, check
the distance again on line 22, and start the process all over again for as
long as the Arduino is on.

5. Plug the Arduino into your computer and make sure the correct port and board
options are selected under the Tools menu. Open the Serial Monitor using

CHAPTER 4. LEVEL 3 PROJECTS 22
the menu options Tools > Serial Monitor or by pressing Ctrl+Shift+M. This
way we can see the output from the code as soon as it is done uploading.

6. Upload the program to the Arduino by clicking on the right arrow icon in the
top left, by pressing Ctrl+U, or by selecting the menu option Sketch > Upload.
The program will take a few seconds to upload and then you should see out-
put on the Serial Monitor. If you move within the threshold alert range (the
default provided in the program is 10 centimeters), the LED will blink and the
buzzer will buzz at you. To change the threshold range, change the value of
the threshold variable in the code to the desired value in centimeters.

Circuit

Figure 4.1: Circuit representation for the ultrasonic security project.

CHAPTER 4. LEVEL 3 PROJECTS 23
Script

1 #inc lude <HCSR04 . h>
2
3 const u in t8_t t r i g g e r = 13; // Pin number connected to " Tr ig " .
4 const u in t8_t echo = 12; // Pin number connected to "Echo " .
5 UltraSonicDistanceSensor distanceSensor (t r igger , echo) ;
6
7 const u in t8_t buzzer = 9; // Pin number connected to buzzer .
8 const u in t8_t led = 8; // Pin number connected to LED .
9 const u in t8_t threshold = 10; // Threshold in cent imeters .

10
11 void setup () {
12 // Star t s e r i a l communication using baudrate 9600.
13 S e r i a l . begin (9600) ;
14
15 // Set the buzzer and LED pin modes as output .
16 pinMode (buzzer , OUTPUT) ;
17 pinMode (led , OUTPUT) ;
18 }
19
20 void loop () {
21 // Read the distance in cent imeters .
22 double distance = distanceSensor . measureDistanceCm () ;
23
24
25 // P r i n t out the distance to the S e r i a l Monitor .
26 S e r i a l . p r i n t (" Distance : ") ;
27 S e r i a l . p r i n t (d istance) ;
28 S e r i a l . p r i n t l n (" cm") ;
29
30
31 // Check that we have a v a l i d reading and the distance
32 // i s w i th in our a l e r t threshold .
33 i f (d istance > 0 && distance < threshold)
34 {
35 // Turn the buzzer and the LED on .

CHAPTER 4. LEVEL 3 PROJECTS 24
36 tone (buzzer , 440, 100) ;
37 d i g i t a l W r i t e (led , HIGH) ;
38
39 // Wait fo r 100 mi l l i seconds .
40 delay (100) ;
41
42 // Turn the LED o f f .
43 d i g i t a l W r i t e (led , LOW) ;
44
45 // Wait fo r 100 mi l l i seconds .
46 delay (100) ;
47 }
48 }

CHAPTER 5. LEVEL 4 PROJECTS 25

5 Level 4 Projects

5.1 TFT Etch-a-Sketch

Parts Required
• 1x Arduino + USB Cable
• 1x 1.8” TFT Display
• 18x Wires
• 1x Pushbutton
• 2x Potentiometer
• 1x 1kΩ Resistor

Steps
• Building the Circuit

1. Place the 1.8” TFT Display so that all eight pins are in separate, empty rows
on the breadboard.

2. Place one potentiometer so that all three pins are in separate, empty rows on
the breadboard to one side of the TFT display.

3. Place the second potentiometer so that all three pins are in separate, empty
rows on the breadboard to the other side of the TFT display.

4. Place the pushbutton so that it straddles the river in the center of the bre-
aboard and all four pins are in empty rows.

5. Connect the TFT display as shown in Figure 5.1. The pins are labeled as follows
from left to right with the screen facing up: LED, SCK, SDA, A0, RESET, CS, GND,
VCC. The labels shown in the figure are the same as those on the bottom of the
display provided in the kit. The wiring connections to the Arduino are shown
in Table 5.1. The GND and VCC pins are connected to the negative and positive
power rails on the breadboard, respectively.

CHAPTER 5. LEVEL 4 PROJECTS 26
TFT Pin Arduino PinLED 3.3 VSCK 13SDA 11A0 9RESET 8CS 10

Table 5.1: 1.8” TFT wiring connections to the Arduino Uno.
6. On both potentiometers, connect wires in the following manner:

– Take the first wire and plug one end into a hole in the positive power rail on
the breadboard. Plug the other end into a hole in the same row as either
the left or right pin on the potentiometer.

– Take the second wire and plug one end into a hole in the negative power
rail on the breadboard. Plug the other end into a hole in the same row as
the opposite pin on the potentiometer that you used for the first wire.

– Take the third wire and plug one end into pin “A0” for the left potentiome-
ter or “A1” for the right potentiometer. Plug the other end into a hole in
the same row as the center pin on the potentiometer. Note that the po-
tentiometer plugged into “A0” will control the movement along the longer
axis of the display and the potentiometer plugged into “A1” will control
movement along the shorter axis of the display.

7. To connect the pushbutton, take one wire and plug one end into a hole in the
positive power rail on the breadboard. Plug the other end into the same row
as one of the pins on the pushbutton. Take a second wire and plug one end
into pin “2” on the Arduino. Plug the other end into a hole in the same row as
the second pin on the pushbutton.

8. Take the 1 kΩ resistor and plug one leg into a hole in the same row as the
wire connecting the pushbutton to pin “2” from the last step. Plug the other
leg into the negative power rail on the breadboard. This resistor is known as
a pull-down resistor that pulls the signal into pin “2” down to ground so that
the Arduino program can recognize the button as not pressed. If we don’t do
this, the output signal from the pushbutton is called floating, meaning it has

CHAPTER 5. LEVEL 4 PROJECTS 27
no defined value. This can potentially result in the Arduino thinking the button
is pressed when it is not, erasing our drawings.

9. Once everything is connected, we want to power our circuit by plugging one
end of another wire into the “5 V” pin on the Arduino and the other end into the
positive power rail on the breadboard. Complete the circuit by taking another
wire and plugging one end into one of the “GND” pins and plug the other end
into the negative power rail on the breadboard.

10. Now that the circuit is built, go to your computer, open the Arduino IDE, and
proceed to the next section to write the Etch-a-Sketch program.

CHAPTER 5. LEVEL 4 PROJECTS 28
Circuit

Figure 5.1: Circuit representation for the TFT Etch-a-Sketch project.

CHAPTER 5. LEVEL 4 PROJECTS 29
Script

1 #inc lude <TFT . h> // Arduino LCD l i b r a r y
2 #inc lude <SPI . h> // Communication with LCD
3
4
5 // Def ine pin connections fo r data
6 // t r a n s f e r from the TFT d isp lay .
7 const u in t8_t cs = 10; // ChipSselect
8 const u in t8_t dc = 9; // Data/Command. A0 on our board .
9 const u in t8_t r s t = 8; // Reset

10
11
12 // Create an object representat ion of the TFT d isp lay .
13 TFT TFTscreen = TFT(cs , dc , r s t) ;
14
15
16 // Def ine a new object type to represent a p i x e l point .
17 typedef s t ruc t
18 {
19 u in t8_t x ;
20 u in t8_t y ;
21 } P i x e l ;
22
23
24 // Create objects to track the current and l a s t pos i t i on .
25 P i x e l currPnt ;
26 P i x e l l as tPn t ;
27
28
29 // pin the erase switch i s connected to
30 const u in t8_t erasePin = 2;
31
32 void setup () {
33 // Swap between RGB and BGR .
34 // Va l id values : 0 , 1
35 TFTscreen . i n v e r t D i s p l a y (1) ;

CHAPTER 5. LEVEL 4 PROJECTS 30
36
37
38 // Set our cursor at the center of the screen .
39 currPnt . x = TFTscreen . width () / 2;
40 currPnt . y = TFTscreen . height () / 2;
41 las tPnt . x = TFTscreen . width () / 2;
42 las tPnt . y = TFTscreen . height () / 2;
43
44
45 // Set the pushbutton as an input s igna l .
46 pinMode (erasePin , INPUT) ;
47
48 // I n i t i a l i z e the screen
49 TFTscreen . begin () ;
50
51 // Make the background black
52 // using the RGB color (0 , 0 , 0) .
53 TFTscreen . background (0 , 0 , 0) ;
54 }
55
56 void loop () {
57 // Read the potentiometers on A0 and A1
58 uint16_t xValue = analogRead (A0) ;
59 uint16_t yValue = analogRead (A1) ;
60
61
62 // Convert the input values to a v a l i d range .
63 // The d isp lay i s 160 p i x e l s wide , so we take the
64 // x range 0 to 159.
65 // I t i s 128 p i x e l s t a l l , so we take the
66 // y range 0 to 127.
67 currPnt . x = map(xValue , 0 , 1023, 0 , 159) ;
68 currPnt . y = map(yValue , 0 , 1023, 0 , 127) ;
69
70
71 // Draw the l a s t point loca t ion white ,

CHAPTER 5. LEVEL 4 PROJECTS 31
72 TFTscreen . stroke (255 , 255 , 255) ;
73 TFTscreen . point (l as tPn t . x , l as tPn t . y) ;
74
75
76 // Draw the current point loca t ion blue .
77 TFTscreen . stroke (255 , 0 , 0) ;
78 TFTscreen . point (currPnt . x , currPnt . y) ;
79
80
81 // Store the current loca t ion as the l a s t loca t ion
82 // for the next i t e r a t i o n .
83 las tPnt . x = currPnt . x ;
84 las tPnt . y = currPnt . y ;
85
86
87 // Read the value of the pushbutton , and erase the screen i f pressed
88 i f (d ig i ta lRead (erasePin) == HIGH)
89 {
90 TFTscreen . background (0 , 0 , 0) ;
91 }
92
93 delay (33) ;
94 }

	Introduction
	Welcome to the Future Innovators Workshop
	Arduino
	Arduino IDE
	Breadboard
	Voltage
	Current
	Resistance

	Level 1 Projects
	Pushbutton LED
	Tunable LED Brightness

	Level 2 Projects
	Basic Buzzer
	Programmable Buzzer

	Level 3 Projects
	Ultrasonic Security System

	Level 4 Projects
	TFT Etch-a-Sketch

